Suppr超能文献

基于新陈代谢的通风监测与控制方法,用于减轻体育馆及类似场所的新冠病毒风险

Metabolism-based ventilation monitoring and control method for COVID-19 risk mitigation in gymnasiums and alike places.

作者信息

Wang Junqi, Huang Jingjing, Fu Qiming, Gao Enting, Chen Jianping

机构信息

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Jiangsu Key Laboratory of Intelligent Building Energy Efficiency, Suzhou, Jiangsu 215009, China.

出版信息

Sustain Cities Soc. 2022 May;80:103719. doi: 10.1016/j.scs.2022.103719. Epub 2022 Jan 29.

Abstract

Gymnasiums, fitness rooms and alike places offer exercise services to citizens, which play positive roles in promoting health and enhancing human immunity. Due to the high metabolic rates during exercises, supplying sufficient ventilation in these places is essential and extremely important especially given the risk of infectious respiratory diseases like COVID-19. Traditional ventilation control methods rely on a single CO sensor (often placed at return air duct), which is often difficult to reflect the human metabolic rates accurately, and thus can hardly control the infection risk instantly. Thus, to ensure a safe and healthy environment in places with high metabolism, a real-time metabolism-based ventilation control method is proposed. A computer vision algorithm is developed to monitor human activities (regarding human motion amplitude and speed) and an artificial neural network is established for metabolic prediction. Case studies show that the proposed metabolism-based ventilation control method can reduce the infection probability down to 4.3-6.3% while saving 13% of energy in comparison with the strategy of fixed-fresh-air ventilation. In the development of healthy and sustainable society, gymnasiums and alike exercise places are essential and the proposed ventilation control method is a promising solution to decrease the risk of COVID-19 while preserving features of energy saving and carbon emission reduction.

摘要

体育馆、健身房及类似场所为市民提供锻炼服务,对促进健康和增强人体免疫力发挥着积极作用。由于运动期间新陈代谢率较高,在这些场所提供充足的通风至关重要,尤其是考虑到新冠病毒等传染性呼吸道疾病的风险时。传统的通风控制方法依赖于单个一氧化碳传感器(通常放置在回风管道),这往往难以准确反映人体新陈代谢率,因此很难即时控制感染风险。因此,为确保高代谢场所的安全健康环境,提出了一种基于实时新陈代谢的通风控制方法。开发了一种计算机视觉算法来监测人体活动(考虑人体运动幅度和速度),并建立了一个人工神经网络用于代谢预测。案例研究表明,与固定新风通风策略相比,所提出的基于新陈代谢的通风控制方法可将感染概率降低至4.3%-6.3%,同时节省13%的能源。在健康可持续社会的发展中,体育馆及类似的锻炼场所至关重要,所提出的通风控制方法是一种很有前景的解决方案,可降低新冠病毒感染风险,同时兼具节能和减排的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba7/8799456/ca02343749fa/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验