Suppr超能文献

弗罗多:一种用于从训练好的神经网络中剔除异常样本的系统的深入分析。

FRODO: An In-Depth Analysis of a System to Reject Outlier Samples From a Trained Neural Network.

作者信息

Calli Erdi, Van Ginneken Bram, Sogancioglu Ecem, Murphy Keelin

出版信息

IEEE Trans Med Imaging. 2023 Apr;42(4):971-981. doi: 10.1109/TMI.2022.3221898. Epub 2023 Apr 3.

Abstract

An important limitation of state-of-the-art deep learning networks is that they do not recognize when their input is dissimilar to the data on which they were trained and proceed to produce outputs that will be unreliable or nonsensical. In this work, we describe FRODO (Free Rejection of Out-of-Distribution), a publicly available method that can be easily employed for any trained network to detect input data from a different distribution than is expected. FRODO uses the statistical distribution of intermediate layer outputs to define the expected in-distribution (ID) input image properties. New samples are judged based on the Mahalanobis distance (MD) of their layer outputs from the defined distribution. The method can be applied to any network, and we demonstrate the performance of FRODO in correctly rejecting OOD samples on three distinct architectures for classification, localization, and segmentation tasks in chest X-rays. A dataset of 21,576 X-ray images with 3,655 in-distribution samples is defined for testing. The remaining images are divided into four OOD categories of varying levels of difficulty, and performance at rejecting each type is evaluated using receiver operating characteristic (ROC) analysis. FRODO achieves areas under the ROC (AUC) of between 0.815 and 0.999 in distinguishing OOD samples of different types. This is shown to be comparable with the best-performing state-of-the-art method tested, with the substantial advantage that FRODO integrates seamlessly with any network and requires no extra model to be constructed and trained.

摘要

当前最先进的深度学习网络的一个重要局限性在于,当输入数据与它们所训练的数据不同时,它们无法识别,进而产生不可靠或无意义的输出。在这项工作中,我们描述了FRODO(离群分布自由拒绝),这是一种公开可用的方法,可轻松应用于任何训练好的网络,以检测来自与预期不同分布的输入数据。FRODO利用中间层输出的统计分布来定义预期的分布内(ID)输入图像属性。新样本根据其层输出与定义分布的马氏距离(MD)进行判断。该方法可应用于任何网络,并且我们展示了FRODO在胸部X光分类、定位和分割任务的三种不同架构上正确拒绝离群分布样本的性能。定义了一个包含21576张X光图像的数据集,其中有3655个分布内样本用于测试。其余图像被分为四个难度不同的离群分布类别,并使用接收者操作特征(ROC)分析来评估拒绝每种类型样本的性能。FRODO在区分不同类型的离群分布样本时,ROC曲线下面积(AUC)在0.815至0.999之间。结果表明,这与测试的性能最佳的当前最先进方法相当,且具有显著优势,即FRODO可无缝集成到任何网络中,无需构建和训练额外的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验