Suppr超能文献

基于肽的疫苗:当前进展和未来挑战。

Peptide-Based Vaccines: Current Progress and Future Challenges.

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, New York 10461, United States.

出版信息

Chem Rev. 2020 Mar 25;120(6):3210-3229. doi: 10.1021/acs.chemrev.9b00472. Epub 2019 Dec 5.

Abstract

Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.

摘要

疫苗对传染病的管理和预防产生了深远的影响。此外,针对慢性疾病的疫苗的开发作为一种预防而非治疗癌症、阿尔茨海默病等疾病的方法引起了相当大的关注。亚单位疫苗由传染性病原体或与疾病相关的表位的非遗传成分组成。在这篇综述中,我们讨论了基于肽的疫苗及其在三个治疗领域的潜力:传染病、阿尔茨海默病和癌症。我们讨论了有助于疫苗效力的因素,以及这些参数如何通过设计来潜在地调节。我们既研究了临床测试的疫苗,也研究了新生方法,并探讨了当前的挑战和潜在的补救措施。虽然肽疫苗在预防人类疾病方面具有很大的潜力,但仍存在许多阻碍其临床应用的障碍;因此,有必要继续努力研究这些挑战。

相似文献

1
Peptide-Based Vaccines: Current Progress and Future Challenges.
Chem Rev. 2020 Mar 25;120(6):3210-3229. doi: 10.1021/acs.chemrev.9b00472. Epub 2019 Dec 5.
2
Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines.
J Med Chem. 2020 Dec 10;63(23):14184-14196. doi: 10.1021/acs.jmedchem.0c00848. Epub 2020 Oct 7.
3
Challenges in the development of effective peptide vaccines for cancer.
Mayo Clin Proc. 2002 Apr;77(4):339-49. doi: 10.4065/77.4.339.
4
Prophylactic immunotherapy of Alzheimer's disease using recombinant amyloid-β B-cell epitope chimeric protein as subunit vaccine.
Hum Vaccin Immunother. 2016 Nov;12(11):2801-2804. doi: 10.1080/21645515.2016.1197456. Epub 2016 Jul 5.
6
A vaccine against Alzheimer`s disease: anything left but faith?
Expert Opin Biol Ther. 2019 Jan;19(1):73-78. doi: 10.1080/14712598.2019.1554646. Epub 2018 Dec 17.
7
A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease.
Alzheimers Dement. 2015 Oct;11(10):1246-59. doi: 10.1016/j.jalz.2015.06.1884. Epub 2015 Jul 17.
8
[Classic vaccinology and advances in vaccine design].
Enferm Infecc Microbiol Clin. 2008 Nov;26(9):564-72. doi: 10.1157/13128274.
9
Peptide vaccines against cancer, infectious diseases, and conception.
Front Biosci. 2007 Jan 1;12:1833-44. doi: 10.2741/2191.
10
Epitope discovery and their use in peptide based vaccines.
Curr Pharm Des. 2010;16(28):3149-57. doi: 10.2174/138161210793292447.

引用本文的文献

2
mRNA vaccines for gastrointestinal cancers: a paradigm shift in treatment.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Aug 6. doi: 10.1007/s00210-025-04462-8.
3
Overcoming resistant cancerous tumors through combined photodynamic and immunotherapy (photoimmunotherapy).
Front Immunol. 2025 Jul 17;16:1633953. doi: 10.3389/fimmu.2025.1633953. eCollection 2025.
5
Study on immunogenicity of recombinant ferritin hemagglutinin of canine distemper virus.
Virol J. 2025 Jul 28;22(1):260. doi: 10.1186/s12985-025-02802-x.
7
Lung cancer vaccine strategies: exploring the spectrum from traditional to RNA-based platforms.
Front Bioeng Biotechnol. 2025 Jun 23;13:1617352. doi: 10.3389/fbioe.2025.1617352. eCollection 2025.
8
Self-assembled peptide-dye nanostructures for in vivo tumor imaging and photodynamic toxicity.
Npj Imaging. 2024 Mar 4;2(1):4. doi: 10.1038/s44303-024-00008-4.
10
Immunogenicity Evaluation of Epitope-Based Vaccine on Target of RNAIII-Activating Protein (TRAP) of .
Biology (Basel). 2025 May 27;14(6):616. doi: 10.3390/biology14060616.

本文引用的文献

1
Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives.
J Hematol Oncol. 2019 Oct 29;12(1):111. doi: 10.1186/s13045-019-0798-2.
2
Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor.
Science. 2019 Jul 12;365(6449):162-168. doi: 10.1126/science.aav8692.
4
Efficacy and Safety Analysis of Nelipepimut-S Vaccine to Prevent Breast Cancer Recurrence: A Randomized, Multicenter, Phase III Clinical Trial.
Clin Cancer Res. 2019 Jul 15;25(14):4248-4254. doi: 10.1158/1078-0432.CCR-18-2867. Epub 2019 Apr 29.
8
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
9
HCV-Specific T Cell Responses During and After Chronic HCV Infection.
Viruses. 2018 Nov 17;10(11):645. doi: 10.3390/v10110645.
10
Ten Years of Tau-Targeted Immunotherapy: The Path Walked and the Roads Ahead.
Front Neurosci. 2018 Nov 2;12:798. doi: 10.3389/fnins.2018.00798. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验