Department of Environmental Engineering, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Zip Code 29075-910, Vitória, Espírito Santo, Brazil.
Laboratory of Combustion and Combustible Matter (LCCm), PPGEM, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Zip Code 29075-910, Vitória, Espírito Santo, Brazil.
J Environ Manage. 2023 Jan 15;326(Pt A):116640. doi: 10.1016/j.jenvman.2022.116640. Epub 2022 Nov 11.
Sludge dewatering and drying are the main processes related to sludge management in wastewater treatment plants (WWTPs). Sludge disposal is a high-cost activity, and drying the sludge reduces its mass and volume, resulting in savings in storage, handling and transportation. The discoveries regarding the use of solar energy in agricultural studies provided valuable information for using in sewage sludge drying. Some studies have reported that dry sludge has met the EPA Class A requirement for biosolids using only solar energy as an energy source. The proper sludge mixture, manual or mechanical, and the dewatering process can significantly increase the drying rate, reducing drying time and the surface area needed. The environmental conditions and the sludge's type greatly influence the drying system. A solar dryer system may be suitable to dry different types of wastewater sludge. Modeling techniques can predict the behavior of the solar drying system and, thus, save time and money in experimental steps. CFD modeling of the sludge drying system is usually done by adopting specific boundary conditions and solving the Navier Stokes equations for air and sludge. There is no standard methodology for comparing solar dryers and common methodologies, such as system efficiency and thermal efficiency, disregards different dryers in different operational conditions. A SWOT (strengths, weaknesses, opportunities, and threats) analysis indicated that, in general, the chapel-type greenhouse with mixed-mode drying has higher drying rates, resulting in reduced drying time and can be scaled to any size. Thus, this type of dryer emerges as a more economical alternative to commercial solar dryers. Based on a systematic review, this work points the SWOT analysis as a useful tool for selecting solar dryers.
污泥脱水和干燥是污水处理厂(WWTP)中与污泥管理相关的主要工艺。污泥处置是一项高成本的活动,而干燥污泥可以减少其质量和体积,从而节省储存、处理和运输成本。在农业研究中对太阳能的利用的发现为利用污水污泥干燥提供了有价值的信息。一些研究报告称,仅使用太阳能作为能源,干燥污泥就已达到 EPA 一级生物固体要求。适当的污泥混合、手动或机械脱水过程可以显著提高干燥速度,缩短干燥时间并减少所需表面积。环境条件和污泥类型对干燥系统有很大影响。太阳能干燥系统可能适用于干燥不同类型的废水污泥。建模技术可以预测太阳能干燥系统的行为,从而在实验步骤中节省时间和金钱。通常,通过采用特定的边界条件并求解空气和污泥的纳维-斯托克斯方程来对污泥干燥系统进行 CFD 建模。对于太阳能干燥器的比较,没有标准的方法,常见的方法,如系统效率和热效率,忽略了不同操作条件下的不同干燥器。SWOT(优势、劣势、机会和威胁)分析表明,混合模式干燥的教堂式温室一般具有更高的干燥速率,从而缩短了干燥时间,可以按任何尺寸进行缩放。因此,这种类型的干燥器作为商业太阳能干燥器的更经济替代方案出现。基于系统评价,这项工作指出 SWOT 分析是选择太阳能干燥器的有用工具。