Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia.
Nat Commun. 2022 Nov 14;13(1):6910. doi: 10.1038/s41467-022-34718-3.
Tumour microenvironment hinders nanoparticle transport deep into the tissue precluding thorough treatment of solid tumours and metastatic nodes. We introduce an anticancer drug delivery concept termed FlaRE (Flash Release in Endothelium), which represents alternative to the existing approaches based on enhanced permeability and retention effect. This approach relies on enhanced drug-loaded nanocarrier accumulation in vessels of the target tumour or metastasised organ, followed by a rapid release of encapsulated drug within tens of minutes. It leads to a gradient-driven permeation of the drug to the target tissue. This pharmaceutical delivery approach is predicted by theoretical modelling and validated experimentally using rationally designed MIL-101(Fe) metal-organic frameworks. Doxorubicin-loaded MIL-101 nanoparticles get swiftly trapped in the vasculature of the metastasised lungs, disassemble in the blood vessels within 15 minutes and release drug, which rapidly impregnates the organ. A significant improvement of the therapeutic outcome is demonstrated in animal models of early and late-stage B16-F1 melanoma metastases with 11-fold and 4.3-fold decrease of pulmonary melanoma nodes, respectively.
肿瘤微环境阻碍了纳米颗粒向组织深处的运输,从而妨碍了对实体瘤和转移性淋巴结的彻底治疗。我们提出了一种称为 FlaRE(内皮快速释放)的抗癌药物输送概念,它代表了现有基于增强渗透性和保留效应的方法的替代方案。这种方法依赖于增强药物负载的纳米载体在靶肿瘤或转移器官的血管中的积累,然后在数十分钟内迅速释放封装的药物。这导致药物在梯度驱动下渗透到靶组织中。这种药物输送方法通过理论建模进行预测,并使用合理设计的 MIL-101(Fe) 金属有机骨架进行实验验证。载有阿霉素的 MIL-101 纳米颗粒迅速被困在转移性肺部的血管中,在 15 分钟内在血管内解体并释放药物,药物迅速渗透到器官中。在早期和晚期 B16-F1 黑色素瘤转移的动物模型中,分别将肺黑色素瘤节点的数量减少了 11 倍和 4.3 倍,从而显著改善了治疗效果。