Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, 90187, Umeå, Sweden.
Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA.
Nat Commun. 2022 Nov 15;13(1):6962. doi: 10.1038/s41467-022-34691-x.
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
蛋白酶体在具有细胞外阶段的细胞内病原体的生命周期中起着至关重要的作用,通过在资源有限的环境中确保蛋白质的稳定来实现。在微孢子虫中,具有极其精简基因组的不同寄生虫,蛋白酶体的复杂性和结构尚不清楚,这限制了我们对这些独特病原体如何适应和紧凑必需的真核复合物的理解。我们展示了从休眠或萌发的 Vairimorpha necatrix 孢子中分离出的微孢子虫 20S 和 26S 蛋白酶体的冷冻电子显微镜结构。发现 PI31 样肽,已知可抑制蛋白酶体活性,同时结合到休眠孢子蛋白酶体中心腔的所有六个活性部位,表明在环境阶段活性降低。相比之下,在萌发后不存在 PI31 样肽,并且在存在 ATP 的情况下存在 26S 颗粒,表明在富含营养的条件下蛋白酶体被重新激活。结构和系统发育分析表明,微孢子虫蛋白酶体经历了广泛的还原进化,至少失去了两种调节蛋白,并紧凑了几乎所有亚基。微孢子虫蛋白酶体的高度衍生结构,以及这里呈现的最小化的 PI31 版本,增强了特异性抑制剂的开发可行性,并为这些具有医学和经济重要性的病原体的独特进化和生物学提供了深入了解。