Mikolajewicz Nicholas, Khan Shahbaz, Trifoi Mara, Skakdoub Anna, Ignatchenko Vladmir, Mansouri Sheila, Zuccatto Jeffrey, Zacharia Brad E, Glantz Michael, Zadeh Gelareh, Moffat Jason, Kislinger Thomas, Mansouri Alireza
Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
Neurooncol Adv. 2022 Oct 7;4(1):vdac161. doi: 10.1093/noajnl/vdac161. eCollection 2022 Jan-Dec.
Diagnosis and prognostication of intra-axial brain tumors hinges on invasive brain sampling, which carries risk of morbidity. Minimally-invasive sampling of proximal fluids, also known as liquid biopsy, can mitigate this risk. Our objective was to identify diagnostic and prognostic cerebrospinal fluid (CSF) proteomic signatures in glioblastoma (GBM), brain metastases (BM), and primary central nervous system lymphoma (CNSL).
CSF samples were retrospectively retrieved from the Penn State Neuroscience Biorepository and profiled using shotgun proteomics. Proteomic signatures were identified using machine learning classifiers and survival analyses.
Using 30 µL CSF volumes, we recovered 755 unique proteins across 73 samples. Proteomic-based classifiers identified malignancy with area under the receiver operating characteristic (AUROC) of 0.94 and distinguished between tumor entities with AUROC ≥0.95. More clinically relevant triplex classifiers, comprised of just three proteins, distinguished between tumor entities with AUROC of 0.75-0.89. Novel biomarkers were identified, including GAP43, TFF3 and CACNA2D2, and characterized using single cell RNA sequencing. Survival analyses validated previously implicated prognostic signatures, including blood-brain barrier disruption.
Reliable classification of intra-axial malignancies using low CSF volumes is feasible, allowing for longitudinal tumor surveillance.
轴内脑肿瘤的诊断和预后评估依赖于侵入性脑采样,这存在发病风险。对近端液体进行微创采样,即液体活检,可降低这种风险。我们的目标是确定胶质母细胞瘤(GBM)、脑转移瘤(BM)和原发性中枢神经系统淋巴瘤(CNSL)的诊断和预后脑脊液(CSF)蛋白质组学特征。
从宾夕法尼亚州立大学神经科学生物样本库中回顾性获取脑脊液样本,并使用鸟枪法蛋白质组学进行分析。使用机器学习分类器和生存分析确定蛋白质组学特征。
使用30微升脑脊液样本,我们在73个样本中鉴定出755种独特蛋白质。基于蛋白质组学的分类器以0.94的受试者工作特征曲线下面积(AUROC)识别恶性肿瘤,并以AUROC≥0.95区分肿瘤实体。由仅三种蛋白质组成的更具临床相关性的三联分类器以0.75 - 0.89的AUROC区分肿瘤实体。鉴定出了新的生物标志物,包括GAP43、TFF3和CACNA2D2,并使用单细胞RNA测序进行了表征。生存分析验证了先前涉及的预后特征,包括血脑屏障破坏。
使用少量脑脊液对轴内恶性肿瘤进行可靠分类是可行的,可实现对肿瘤的纵向监测。