Suppr超能文献

单细胞外囊泡表型的数字解码可区分早期恶性和良性肺病变。

Digital Decoding of Single Extracellular Vesicle Phenotype Differentiates Early Malignant and Benign Lung Lesions.

作者信息

Li Junrong, Sina Abu A I, Antaw Fiach, Fielding David, Möller Andreas, Lobb Richard, Wuethrich Alain, Trau Matt

机构信息

Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.

Department of Thoracic Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia.

出版信息

Adv Sci (Weinh). 2022 Nov 17;10(1):e2204207. doi: 10.1002/advs.202204207.

Abstract

Accurate identification of malignant lung lesions is a prerequisite for rational clinical management to reduce morbidity and mortality of lung cancer. However, classification of lung nodules into malignant and benign cases is difficult as they show similar features in computer tomography and sometimes positron emission tomography imaging, making invasive tissue biopsies necessary. To address the challenges in evaluating indeterminate nodules, the authors investigate the molecular profiles of small extracellular vesicles (sEVs) in differentiating malignant and benign lung nodules via a liquid biopsy-based approach. Aiming to characterize phenotypes between malignant and benign groups, they develop a single-molecule-resolution-digital-sEV-counting-detection (DECODE) chip that interrogates three lung-cancer-associated sEV biomarkers and a generic sEV biomarker to create sEV molecular profiles. DECODE capturessEVs on a nanostructured pillar chip, confines individual sEVs, and profiles sEV biomarker expression through surface-enhanced Raman scattering barcodes. The author utilize DECODE to generate a digitally acquired sEV molecular profiles in a cohort of 33 people, including patients with malignant and benign lung nodules, and healthy individuals. Significantly, DECODE reveals sEV-specific molecular profiles that allow the separation of malignant from benign (area under the curve, AUC = 0.85), which is promising for non-invasive characterisation of lung nodules found in lung cancer screening and warrants further clinincal validaiton with larger cohorts.

摘要

准确识别恶性肺病变是合理临床管理以降低肺癌发病率和死亡率的前提条件。然而,将肺结节分为恶性和良性病例很困难,因为它们在计算机断层扫描以及有时在正电子发射断层扫描成像中表现出相似的特征,这使得有必要进行侵入性组织活检。为应对评估不确定结节的挑战,作者通过基于液体活检的方法研究了小细胞外囊泡(sEV)在区分恶性和良性肺结节方面的分子特征。为了表征恶性和良性组之间的表型,他们开发了一种单分子分辨率数字sEV计数检测(DECODE)芯片,该芯片检测三种与肺癌相关的sEV生物标志物和一种通用的sEV生物标志物,以创建sEV分子特征。DECODE在纳米结构柱芯片上捕获sEV,限制单个sEV,并通过表面增强拉曼散射条形码分析sEV生物标志物表达。作者利用DECODE在包括恶性和良性肺结节患者以及健康个体在内的33人队列中生成数字化获取的sEV分子特征。重要的是,DECODE揭示了sEV特异性分子特征,能够将恶性与良性区分开来(曲线下面积,AUC = 0.85),这对于肺癌筛查中发现的肺结节的非侵入性表征很有前景,并且需要在更大的队列中进行进一步的临床验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7a6/9811438/b6df79105a74/ADVS-10-2204207-g006.jpg

相似文献

5
Plasmonic nano-aperture label-free imaging of single small extracellular vesicles for cancer detection.
Commun Med (Lond). 2024 May 25;4(1):100. doi: 10.1038/s43856-024-00514-x.
6
Molecular Stratification and Treatment Monitoring of Lung Cancer Using a Small Extracellular Vesicle-Activated Nanocavity Architecture.
Anal Chem. 2024 May 14;96(19):7651-7660. doi: 10.1021/acs.analchem.4c00558. Epub 2024 May 1.
8
Small extracellular vesicle CA1 as a promising diagnostic biomarker for nasopharyngeal carcinoma.
Int J Biol Macromol. 2024 Aug;275(Pt 1):133403. doi: 10.1016/j.ijbiomac.2024.133403. Epub 2024 Jun 23.
9
Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types an Ultrasensitive Chip.
ACS Sens. 2021 Sep 24;6(9):3182-3194. doi: 10.1021/acssensors.1c00358. Epub 2021 Jul 15.

引用本文的文献

1
On the dilemma of using single EV analysis for liquid biopsy: the challenge of low abundance of tumor EVs in blood.
Theranostics. 2025 Jul 24;15(16):8031-8048. doi: 10.7150/thno.115131. eCollection 2025.
2
Extracellular Vesicles for Clinical Diagnostics: From Bulk Measurements to Single-Vesicle Analysis.
ACS Nano. 2025 Aug 12;19(31):28021-28109. doi: 10.1021/acsnano.5c00706. Epub 2025 Jul 28.
3
Single Extracellular Vesicle Profiling to Define Brain Specific Traumatic Brain Injury Induced Neuro-Inflammation.
Small Methods. 2025 Jul;9(7):e2401931. doi: 10.1002/smtd.202401931. Epub 2025 May 19.
4
[Progress and prospect of separation and analysis of single-cell and single-particle exosomes].
Se Pu. 2025 May;43(5):399-412. doi: 10.3724/SP.J.1123.2024.11001.
5
Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection.
Biosens Bioelectron. 2025 Aug 15;282:117475. doi: 10.1016/j.bios.2025.117475. Epub 2025 Apr 21.
6
Pushing the Limits of Lateral Flow Immunoassay by Digital SERS for the Ultralow Detection of SARS-CoV-2 Virus.
Small Sci. 2024 Aug 10;4(11):2400259. doi: 10.1002/smsc.202400259. eCollection 2024 Nov.
7
Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects.
Chem Biomed Imaging. 2023 Dec 15;2(1):27-46. doi: 10.1021/cbmi.3c00095. eCollection 2024 Jan 22.
9

本文引用的文献

1
Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types an Ultrasensitive Chip.
ACS Sens. 2021 Sep 24;6(9):3182-3194. doi: 10.1021/acssensors.1c00358. Epub 2021 Jul 15.
2
An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma.
Nat Biomed Eng. 2021 Jul;5(7):678-689. doi: 10.1038/s41551-021-00752-7. Epub 2021 Jun 28.
6
The evolving translational potential of small extracellular vesicles in cancer.
Nat Rev Cancer. 2020 Dec;20(12):697-709. doi: 10.1038/s41568-020-00299-w. Epub 2020 Sep 21.
7
Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers.
Cell. 2020 Aug 20;182(4):1044-1061.e18. doi: 10.1016/j.cell.2020.07.009. Epub 2020 Aug 13.
9
Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma.
Sci Adv. 2020 Feb 26;6(9):eaax3223. doi: 10.1126/sciadv.aax3223. eCollection 2020 Feb.
10
The biology function and biomedical applications of exosomes.
Science. 2020 Feb 7;367(6478). doi: 10.1126/science.aau6977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验