Li Junrong, Sina Abu A I, Antaw Fiach, Fielding David, Möller Andreas, Lobb Richard, Wuethrich Alain, Trau Matt
Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
Department of Thoracic Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia.
Adv Sci (Weinh). 2022 Nov 17;10(1):e2204207. doi: 10.1002/advs.202204207.
Accurate identification of malignant lung lesions is a prerequisite for rational clinical management to reduce morbidity and mortality of lung cancer. However, classification of lung nodules into malignant and benign cases is difficult as they show similar features in computer tomography and sometimes positron emission tomography imaging, making invasive tissue biopsies necessary. To address the challenges in evaluating indeterminate nodules, the authors investigate the molecular profiles of small extracellular vesicles (sEVs) in differentiating malignant and benign lung nodules via a liquid biopsy-based approach. Aiming to characterize phenotypes between malignant and benign groups, they develop a single-molecule-resolution-digital-sEV-counting-detection (DECODE) chip that interrogates three lung-cancer-associated sEV biomarkers and a generic sEV biomarker to create sEV molecular profiles. DECODE capturessEVs on a nanostructured pillar chip, confines individual sEVs, and profiles sEV biomarker expression through surface-enhanced Raman scattering barcodes. The author utilize DECODE to generate a digitally acquired sEV molecular profiles in a cohort of 33 people, including patients with malignant and benign lung nodules, and healthy individuals. Significantly, DECODE reveals sEV-specific molecular profiles that allow the separation of malignant from benign (area under the curve, AUC = 0.85), which is promising for non-invasive characterisation of lung nodules found in lung cancer screening and warrants further clinincal validaiton with larger cohorts.
准确识别恶性肺病变是合理临床管理以降低肺癌发病率和死亡率的前提条件。然而,将肺结节分为恶性和良性病例很困难,因为它们在计算机断层扫描以及有时在正电子发射断层扫描成像中表现出相似的特征,这使得有必要进行侵入性组织活检。为应对评估不确定结节的挑战,作者通过基于液体活检的方法研究了小细胞外囊泡(sEV)在区分恶性和良性肺结节方面的分子特征。为了表征恶性和良性组之间的表型,他们开发了一种单分子分辨率数字sEV计数检测(DECODE)芯片,该芯片检测三种与肺癌相关的sEV生物标志物和一种通用的sEV生物标志物,以创建sEV分子特征。DECODE在纳米结构柱芯片上捕获sEV,限制单个sEV,并通过表面增强拉曼散射条形码分析sEV生物标志物表达。作者利用DECODE在包括恶性和良性肺结节患者以及健康个体在内的33人队列中生成数字化获取的sEV分子特征。重要的是,DECODE揭示了sEV特异性分子特征,能够将恶性与良性区分开来(曲线下面积,AUC = 0.85),这对于肺癌筛查中发现的肺结节的非侵入性表征很有前景,并且需要在更大的队列中进行进一步的临床验证。