文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

亚硒酸钠对芯片上微血管完整性和通透性的长期影响。

Long-term effect of sodium selenite on the integrity and permeability of on-chip microvasculature.

作者信息

Shaji Maneesha, Kitada Atsuya, Fujimoto Kazuya, Karsten Stanislav L, Yokokawa Ryuji

机构信息

Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.

出版信息

APL Bioeng. 2022 Nov 14;6(4):046105. doi: 10.1063/5.0122804. eCollection 2022 Dec.


DOI:10.1063/5.0122804
PMID:36397962
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9665962/
Abstract

Development of the robust and functionally stable three-dimensional (3D) microvasculature remains challenging. One often-overlooked factor is the presence of potential anti-angiogenic agents in culture media. Sodium selenite, an antioxidant commonly used in serum-free media, demonstrates strong anti-angiogenic properties and has been proposed as an anticancer drug. However, its long-term effects on microvascular systems at the concentrations used in culture media have not been studied. In this study, we used a five-channel microfluidic device to investigate the concentration and temporal effects of sodium selenite on the morphology and functionality of on-chip preformed microvasculature. We found that high concentrations (∼3.0 M) had adverse effects on microvasculature perfusion, permeability, and overall integrity within the first few days. Moreover, even at low concentrations (∼3.0 nM), a long-term culture effect was observed, resulting in an increase in vascular permeability without any noticeable changes in morphology. A further analysis suggested that vessel leakage may be due to vascular endothelial growth factor dysregulation, disruption of intracellular junctions, or both. This study provides important insight into the adverse effects caused by the routinely present sodium selenite on 3D microvasculature in long-term studies for its application in disease modeling and drug screening.

摘要

构建功能强大且稳定的三维(3D)微血管系统仍然具有挑战性。一个常被忽视的因素是培养基中可能存在潜在的抗血管生成剂。亚硒酸钠是无血清培养基中常用的抗氧化剂,具有很强的抗血管生成特性,并已被提议作为一种抗癌药物。然而,其在培养基中使用浓度下对微血管系统的长期影响尚未得到研究。在本研究中,我们使用了一种五通道微流控装置来研究亚硒酸钠的浓度和时间对芯片上预先形成的微血管形态和功能的影响。我们发现,高浓度(约3.0 M)在最初几天内对微血管灌注、通透性和整体完整性有不利影响。此外,即使在低浓度(约3.0 nM)下,也观察到了长期培养效应,导致血管通透性增加,而形态没有任何明显变化。进一步分析表明,血管渗漏可能是由于血管内皮生长因子失调、细胞内连接破坏或两者兼而有之。本研究为长期研究中常规存在的亚硒酸钠对用于疾病建模和药物筛选的3D微血管的不利影响提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/db3dc3747c90/ABPID9-000006-046105_1-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/13a7cf3566d9/ABPID9-000006-046105_1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/24cc53483ec2/ABPID9-000006-046105_1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/ec4790a8712f/ABPID9-000006-046105_1-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/2bcbf9ac8e59/ABPID9-000006-046105_1-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/17701fb88efc/ABPID9-000006-046105_1-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/db3dc3747c90/ABPID9-000006-046105_1-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/13a7cf3566d9/ABPID9-000006-046105_1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/24cc53483ec2/ABPID9-000006-046105_1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/ec4790a8712f/ABPID9-000006-046105_1-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/2bcbf9ac8e59/ABPID9-000006-046105_1-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/17701fb88efc/ABPID9-000006-046105_1-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/9665962/db3dc3747c90/ABPID9-000006-046105_1-g006.jpg

相似文献

[1]
Long-term effect of sodium selenite on the integrity and permeability of on-chip microvasculature.

APL Bioeng. 2022-11-14

[2]
Retinal Microvasculature-on-a-Chip for Modeling VEGF-Induced Permeability.

Methods Mol Biol. 2022

[3]
Three-dimensional microengineered vascularised endometrium-on-a-chip.

Hum Reprod. 2021-9-18

[4]
A permeable on-chip microvasculature for assessing the transport of macromolecules and polymeric nanoconstructs.

J Colloid Interface Sci. 2021-7-15

[5]
Human iPSC-derived brain endothelial microvessels in a multi-well format enable permeability screens of anti-inflammatory drugs.

Biomaterials. 2022-7

[6]
Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease.

Nat Biomed Eng. 2018

[7]
Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.

J Vis Exp. 2019-5-8

[8]
Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature.

Exp Eye Res. 2015-11

[9]
Serial block-face scanning electron microscopy reveals novel intercellular connections in human term placental microvasculature.

J Anat. 2020-8

[10]
A Quasi-Physiological Microfluidic Blood-Brain Barrier Model for Brain Permeability Studies.

Pharmaceutics. 2021-9-15

引用本文的文献

[1]
Organs-on-chips: Advanced engineered living systems.

APL Bioeng. 2024-12-27

本文引用的文献

[1]
A human model of arteriovenous malformation (AVM)-on-a-chip reproduces key disease hallmarks and enables drug testing in perfused human vessel networks.

Biomaterials. 2022-9

[2]
Vascular defects associated with hereditary hemorrhagic telangiectasia revealed in patient-derived isogenic iPSCs in 3D vessels on chip.

Stem Cell Reports. 2022-7-12

[3]
The Role of Major Facilitator Superfamily Domain-Containing 2a in the Central Nervous System.

Cell Mol Neurobiol. 2023-3

[4]
Vasculature-on-a-chip platform with innate immunity enables identification of angiopoietin-1 derived peptide as a therapeutic for SARS-CoV-2 induced inflammation.

Lab Chip. 2022-3-15

[5]
Engineered human blood-brain barrier microfluidic model for vascular permeability analyses.

Nat Protoc. 2022-1

[6]
Antitumor Effects of Selenium.

Int J Mol Sci. 2021-10-31

[7]
Selenite induced breast cancer MCF7 cells apoptosis through endoplasmic reticulum stress and oxidative stress pathway.

Chem Biol Interact. 2021-11-1

[8]
Vascular Mechanobiology: Homeostasis, Adaptation, and Disease.

Annu Rev Biomed Eng. 2021-7-13

[9]
Engineering new microvascular networks on-chip: ingredients, assembly, and best practices.

Adv Funct Mater. 2021-4-1

[10]
Engineering Vascularized Organoid-on-a-Chip Models.

Annu Rev Biomed Eng. 2021-7-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索