Kim Jonathan, Amorim Edilberto, Rao Vikram R, Glass Hannah C, Bernardo Danilo
Department of Neurology and Neurologic Sciences, Stanford University. Palo Alto, California, United States of America.
Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, United States of America.
PLOS Digit Health. 2025 Jul 11;4(7):e0000890. doi: 10.1371/journal.pdig.0000890. eCollection 2025 Jul.
Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.
预测新生儿癫痫发作风险的策略通常集中在长期静态预测上,预测范围涵盖出生后急性期的数天时间。而在分钟时间框架内的更高时间分辨率或短时间范围的新生儿癫痫发作预测仍未得到探索。在此,我们研究了基于定量脑电图(QEEG)的深度学习(DL)用于短时间范围的癫痫发作预测。我们使用了两个公开可用的脑电图癫痫发作数据集,共有132名新生儿,包含总共281小时的脑电图数据。我们对当前最先进的时间序列深度学习方法进行癫痫发作预测基准测试,确定卷积长短期记忆网络(ConvLSTM)在发作前期状态分类方面表现最强。我们在癫痫警报系统中评估了ConvLSTM在不同短程(1 - 7分钟)癫痫发作预测范围(SPH)和癫痫发作发生期(SOP)下的性能,并确定在SPH为3分钟和SOP为7分钟时性能最佳,曲线下面积(AUROC)为0.8。在灵敏度为80%时,误报率为每小时0.68次事件,预警时间为0.36。模型校准中等,预期校准误差为0.106。这些发现确立了短时间范围新生儿癫痫发作预测的可行性,并表明需要进一步验证。