Suppr超能文献

人工智能工作流程定量分析苏木精-伊红染色切片上的肌肉特征,揭示治疗后营养不良表型的改善。

Artificial intelligence workflow quantifying muscle features on Hematoxylin-Eosin stained sections reveals dystrophic phenotype amelioration upon treatment.

机构信息

Télécom SudParis, Institut Polytechnique de Paris, 91120, Palaiseau, France.

Généthon, 91000, Evry, France.

出版信息

Sci Rep. 2022 Nov 19;12(1):19913. doi: 10.1038/s41598-022-24139-z.

Abstract

Cell segmentation is a key step for a wide variety of biological investigations, especially in the context of muscle science. Currently, automated methods still struggle to perform skeletal muscle fiber quantification on Hematoxylin-Eosin (HE) stained histopathological whole slide images due to low contrast. On the other hand, the Deep Learning algorithm Cellpose offers new perspectives considering its increasing adoption for segmentation of a wide range of cells. Combining two open-source tools, Cellpose and QuPath, we developed MyoSOTHES, an automated Myofibers Segmentation wOrkflow Tuned for HE Staining. MyoSOTHES enables solving segmentation inconsistencies encountered by default Cellpose model in presence of large range size cells and provides information related to muscle Feret's diameter distribution and Centrally Nucleated Fibers, thus depicting muscle health and treatment effects. MyoSOTHES achieves high quality segmentation compared to baseline workflow with a detection F1-score increasing from 0.801 to 0.919 and a Root Mean Square Error (RMSE) on diameter improved by 31%. MyoSOTHES was validated on an animal study featuring gene transfer in [Formula: see text]-Sarcoglycanopathy, for which dose-response effect is visible and conclusions drawn are consistent with those previously published. MyoSOTHES thus paves the way for wide quantification of HE stained muscle sections and retrospective analysis of HE labeled slices used in laboratories for decades.

摘要

细胞分割是广泛的生物学研究的关键步骤,特别是在肌肉科学领域。目前,由于对比度低,自动化方法仍然难以对苏木精-伊红(HE)染色的组织病理学全幻灯片图像进行骨骼肌纤维定量。另一方面,深度学习算法 Cellpose 因其越来越多地用于分割广泛的细胞而提供了新的视角。我们结合了两个开源工具,Cellpose 和 QuPath,开发了 MyoSOTHES,这是一种针对 HE 染色的自动肌纤维分割工作流程。MyoSOTHES 能够解决 Cellpose 模型在存在大范围细胞时遇到的分割不一致问题,并提供与肌肉 Feret 直径分布和中央核纤维相关的信息,从而描述肌肉健康和治疗效果。与基线工作流程相比,MyoSOTHES 实现了高质量的分割,检测 F1 分数从 0.801 增加到 0.919,直径的均方根误差(RMSE)提高了 31%。MyoSOTHES 在一项基因转导的动物研究中得到了验证,该研究涉及 [Formula: see text]-肌聚糖病,其中可以看到剂量反应效应,得出的结论与之前发表的结论一致。因此,MyoSOTHES 为广泛量化 HE 染色的肌肉切片以及实验室数十年来使用的 HE 标记切片的回顾性分析铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18dd/9675753/7a13c1e54f57/41598_2022_24139_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验