Miao Siwei, Lei Haike, Li Xiaosheng, Zhou Wei, Wang Guixue, Sun Anlong, Wang Ying, Wu Yongzhong
Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
Chongqing Cancer Multi-Omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.
Cancer Cell Int. 2022 Nov 19;22(1):360. doi: 10.1186/s12935-022-02776-8.
Nasopharyngeal carcinoma (NPC) is prevailing in Southern China, characterized by distinct geographical distribution. Aimed to predict the overall survival (OS) of patients with nasopharyngeal carcinoma, this study developed and validated nomograms considering demographic variables, hematological biomarkers, and oncogenic pathogens in China.
The clinicopathological and follow-up data of the nasopharyngeal carcinoma patients obtained from a prospective longitudinal cohort study in the Chongqing University Cancer Hospital between Jan 1, 2017 and Dec 31, 2019 ([Formula: see text]). Cox regression model was used to tested the significance of all available variables as prognostic factors of OS. And independent prognostic factors were identified based on multivariable analysis to model nomogram. Concordance index (C-index), area under the receiver operating characteristic (AUC), calibration curve, and decision curve analysis (DCA) were measured to assess the model performance of nomogram.
Data was randomly divided into a training cohort (1227 observers, about 70% of data) and a validation group (408 observers, about 30% of data). At multivariable analysis, the following were independent predictors of OS in NPC patients and entered into the nomogram: age (hazard ratio [HR]: 1.03), stage (stage IV vs. stage I-II, HR: 4.54), radiotherapy (Yes vs. No, HR: 0.43), EBV ([Formula: see text] vs.[Formula: see text], HR: 1.92), LAR ([Formula: see text] vs.[Formula: see text], HR: 2.05), NLR ([Formula: see text] vs. [Formula: see text] HR: 1.54), and PLR ([Formula: see text] vs.[Formula: see text], HR: 1.79). The C-indexes for training cohort at 1-, 3- and 5-year were 0.73, 0.83, 0.80, respectively, in the validation cohort, the C-indexes were 0.74 (95% CI 0.63-0.86), 0.80 (95% CI 0.73-0.87), and 0.77 (95% CI 0.67-0.86), respectively. The calibration curve demonstrated that favorable agreement between the predictions of the nomograms and the actual observations in the training and validation cohorts. In addition, the decision curve analysis proved that the nomogram model had the highest overall net benefit.
A new prognostic model to predict OS of patients with NPC was developed. This can offer clinicians treatment making and patient counseling. Furthermore, the nomogram was deployed into a website server for use.
鼻咽癌(NPC)在中国南方地区较为常见,具有明显的地理分布特征。本研究旨在预测鼻咽癌患者的总生存期(OS),通过纳入人口统计学变量、血液生物标志物和致癌病原体,在中国开发并验证了列线图。
收集了2017年1月1日至2019年12月31日在重庆大学附属肿瘤医院进行的一项前瞻性纵向队列研究中鼻咽癌患者的临床病理和随访数据([公式:见正文])。采用Cox回归模型检验所有可用变量作为OS预后因素的显著性。基于多变量分析确定独立预后因素,以构建列线图模型。通过一致性指数(C-index)、受试者操作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)来评估列线图的模型性能。
数据被随机分为训练队列(1227例观察对象,约占数据的70%)和验证组(408例观察对象,约占数据的30%)。在多变量分析中,以下因素是鼻咽癌患者OS的独立预测因素,并被纳入列线图:年龄(风险比[HR]:1.03)、分期(IV期 vs. I-II期,HR:4.54)、放疗(是 vs. 否,HR:0.43)、EBV([公式:见正文] vs. [公式:见正文],HR:1.92)、淋巴细胞与单核细胞比值(LAR,[公式:见正文] vs. [公式:见正文],HR:2.05)、中性粒细胞与淋巴细胞比值(NLR,[公式:见正文] vs. [公式:见正文],HR:1.54)和血小板与淋巴细胞比值(PLR,[公式:见正文] vs. [公式:见正文],HR:1.79)。训练队列1年、3年和5年的C-index分别为0.73、0.