Suppr超能文献

PocketOptimizer 2.0:用于计算机辅助配体结合设计的模块化框架。

PocketOptimizer 2.0: A modular framework for computer-aided ligand-binding design.

机构信息

Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.

Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.

出版信息

Protein Sci. 2023 Jan;32(1):e4516. doi: 10.1002/pro.4516.

Abstract

The ability to design customized proteins to perform specific tasks is of great interest. We are particularly interested in the design of sensitive and specific small molecule ligand-binding proteins for biotechnological or biomedical applications. Computational methods can narrow down the immense combinatorial space to find the best solution and thus provide starting points for experimental procedures. However, success rates strongly depend on accurate modeling and energetic evaluation. Not only intra- but also intermolecular interactions have to be considered. To address this problem, we developed PocketOptimizer, a modular computational protein design pipeline, that predicts mutations in the binding pockets of proteins to increase affinity for a specific ligand. Its modularity enables users to compare different combinations of force fields, rotamer libraries, and scoring functions. Here, we present a much-improved version--PocketOptimizer 2.0. We implemented a cleaner user interface, an extended architecture with more supported tools, such as force fields and scoring functions, a backbone-dependent rotamer library, as well as different improvements in the underlying algorithms. Version 2.0 was tested against a benchmark of design cases and assessed in comparison to the first version. Our results show how newly implemented features such as the new rotamer library can lead to improved prediction accuracy. Therefore, we believe that PocketOptimizer 2.0, with its many new and improved functionalities, provides a robust and versatile environment for the design of small molecule-binding pockets in proteins. It is widely applicable and extendible due to its modular framework. PocketOptimizer 2.0 can be downloaded at https://github.com/Hoecker-Lab/pocketoptimizer.

摘要

设计具有特定功能的定制蛋白质的能力具有重要意义。我们特别感兴趣的是设计用于生物技术或生物医学应用的敏感和特异性小分子配体结合蛋白。计算方法可以缩小巨大的组合空间,找到最佳解决方案,从而为实验程序提供起点。然而,成功率强烈依赖于准确的建模和能量评估。不仅要考虑分子内相互作用,还要考虑分子间相互作用。为了解决这个问题,我们开发了 PocketOptimizer,这是一个模块化的计算蛋白质设计管道,可以预测蛋白质结合口袋中的突变,以提高对特定配体的亲和力。其模块化使用户能够比较不同的力场、构象库和评分函数组合。在这里,我们提出了一个改进的版本——PocketOptimizer 2.0。我们实现了更简洁的用户界面、更扩展的架构,支持更多的工具,如力场和评分函数、基于骨架的构象库,以及底层算法的不同改进。版本 2.0 针对设计案例基准进行了测试,并与第一个版本进行了评估。我们的结果表明,新实现的功能,如新的构象库,如何能够提高预测的准确性。因此,我们相信,PocketOptimizer 2.0 凭借其众多新的和改进的功能,为蛋白质中小分子结合口袋的设计提供了一个强大而通用的环境。由于其模块化框架,它具有广泛的适用性和可扩展性。可以在 https://github.com/Hoecker-Lab/pocketoptimizer 上下载 PocketOptimizer 2.0。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验