Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA.
Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
Crit Rev Biochem Mol Biol. 2022 Oct-Dec;57(5-6):461-476. doi: 10.1080/10409238.2022.2141678. Epub 2022 Nov 20.
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
硫是所有生物体中各种细胞成分的必需元素,为广泛的生物分子增添了相当大的功能。将硫掺入细胞内的中央代谢物如半胱氨酸、蛋氨酸、胱硫醚和同型半胱氨酸的途径早已确立。此外,含硫核苷酸 tRNA、铁硫簇、硫胺素二磷酸和钼辅因子生物合成过程中过硫化物中间体的重要性也是众所周知的。本文简要综述了这些主题,同时强调了涉及非常规生物合成途径的硫代谢的最新方面。描述了从蛋白质半胱氨酸侧链到硫胺素和镍钳合核苷酸(NPN)辅因子前体的牺牲性硫转移。总结了关于硫辛酸、生物素和其他化合物的新合成方面,重点是必需的铁硫簇破坏。使用与 [4Fe-4S] 簇结合的非核心硫化物配体进行硫转移,用于生成某些硫酰胺以及用于替代硫核苷酸和 NPN 辅因子的生物合成途径。通过通过磷酸化激活酰胺氧原子来形成硫酰胺的方法也得到了说明。对这些主题的讨论强调了转化的化学反应机制,通常避免对基因/蛋白质命名或酶的来源进行评论。这项工作为未来努力阐明将硫掺入生物分子的各种机制奠定了基础。