文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NADPH 选择性耗竭纳米医学介导的放射免疫代谢调节增强抗 PD-L1 疗法治疗三阴性乳腺癌。

NADPH Selective Depletion Nanomedicine-Mediated Radio-Immunometabolism Regulation for Strengthening Anti-PDL1 Therapy against TNBC.

机构信息

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Jan;10(3):e2203788. doi: 10.1002/advs.202203788. Epub 2022 Nov 20.


DOI:10.1002/advs.202203788
PMID:36403210
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9875612/
Abstract

Anti-PD(L)1 immunotherapy recently arises as an effective treatment against triple-negative breast cancer (TNBC) but is only applicable to a small portion of TNBC patients due to the low PD-L1 expression and the immunosuppressive tumor microenvironment (TME). To address these challenges, a multifunctional "drug-like" copolymer that possesses the auto-changeable upper critical solution temperature and the capacity of scavenging reduced nicotinamide adenine dinucleotide phosphate (NADPH) inside tumor cells is synthesized and employed to develop a hypoxia-targeted and BMS202 (small molecule antagonist of PD-1/PD-L1 interactions)-loaded nanomedicine (BMS202@HZP NPs), combining the anti-PD-L1 therapy and the low-dose radiotherapy (LDRT) against TNBC. In addition to the controlled release of BMS202 in the hypoxic TNBC, BMS202@HZP NPs benefit the LDRT by upregulating the pentose phosphate pathway (PPP, the primary cellular source for NADPH) of TME whereas scavenging the NADPH inside tumor cells. As a result, the BMS202@HZP NPs-mediated LDRT upregulate the PD-L1 expression of tumor to promote anti-PD-L1 therapy response while reprogramming the immunometabolism of TME to alleviate its immunosuppression. This innovative nanomedicine-mediated radio-immunometabolism regulation provides a promising strategy to reinforce the anti-PD-L1 therapy against TNBC.

摘要

抗 PD-(L)1 免疫疗法最近被认为是治疗三阴性乳腺癌 (TNBC) 的有效方法,但由于 PD-L1 表达低和免疫抑制性肿瘤微环境 (TME),仅适用于一小部分 TNBC 患者。为了解决这些挑战,合成了一种多功能“类药”共聚物,该共聚物具有自动改变的上临界溶液温度和在肿瘤细胞内清除还原型烟酰胺腺嘌呤二核苷酸磷酸 (NADPH) 的能力,并将其用于开发一种缺氧靶向和负载 BMS202(PD-1/PD-L1 相互作用小分子拮抗剂)的纳米药物(BMS202@HZP NPs),结合抗 PD-L1 治疗和低剂量放疗(LDRT)治疗 TNBC。除了在缺氧 TNBC 中控制 BMS202 的释放外,BMS202@HZP NPs 通过上调 TME 中的戊糖磷酸途径(PPP,NADPH 的主要细胞来源)和清除肿瘤细胞内的 NADPH 来受益于 LDRT。结果,BMS202@HZP NPs 介导的 LDRT 上调肿瘤的 PD-L1 表达,以促进抗 PD-L1 治疗反应,同时重塑 TME 的免疫代谢以减轻其免疫抑制作用。这种创新的纳米医学介导的放射免疫代谢调节为加强抗 PD-L1 治疗 TNBC 提供了一种有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/320a165175a6/ADVS-10-2203788-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/f13a4e2e842e/ADVS-10-2203788-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/bb2c09f529b6/ADVS-10-2203788-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/f5262290127f/ADVS-10-2203788-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/b9c20f85e25f/ADVS-10-2203788-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/118423a3db2e/ADVS-10-2203788-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/320a165175a6/ADVS-10-2203788-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/f13a4e2e842e/ADVS-10-2203788-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/bb2c09f529b6/ADVS-10-2203788-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/f5262290127f/ADVS-10-2203788-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/b9c20f85e25f/ADVS-10-2203788-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/118423a3db2e/ADVS-10-2203788-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/9875612/320a165175a6/ADVS-10-2203788-g004.jpg

相似文献

[1]
NADPH Selective Depletion Nanomedicine-Mediated Radio-Immunometabolism Regulation for Strengthening Anti-PDL1 Therapy against TNBC.

Adv Sci (Weinh). 2023-1

[2]
Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment.

Biomaterials. 2023-10

[3]
Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer.

J Nanobiotechnology. 2024-8-1

[4]
Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways.

J Ethnopharmacol. 2021-6-28

[5]
Comparison of the tumor immune microenvironment phenotypes in different breast cancers after neoadjuvant therapy.

Cancer Med. 2023-2

[6]
Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer.

J Exp Clin Cancer Res. 2020-9-7

[7]
Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC.

Breast Cancer Res. 2022-6-3

[8]
UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced transcription in triple negative breast cancer.

Theranostics. 2022

[9]
Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles.

ACS Appl Mater Interfaces. 2021-7-21

[10]
Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1.

J Transl Med. 2023-7-12

引用本文的文献

[1]
Recent advances in phototherapy-based nanomedicine of lymphoma.

Mater Today Bio. 2025-7-3

[2]
Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors.

Biomark Res. 2025-2-26

[3]
Tumor-Derived Extracellular Vesicles Enable Tumor Tropism Chemo-Genetherapy for Local Immune Activation in Triple-Negative Breast Cancer.

ACS Nano. 2024-11-12

[4]
Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs).

Int J Mol Sci. 2024-8-30

[5]
Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications.

Aging Dis. 2024-5-2

[6]
Immunomodulatory Prodrug Micelles Imitate Mild Heat Effects to Reshape Tumor Microenvironment for Enhanced Cancer Immunotherapy.

ACS Nano. 2024-2-20

[7]
Autophagy-amplifying nanoparticles evoke immunogenic cell death combined with anti-PD-1/PD-L1 for residual tumors immunotherapy after RFA.

J Nanobiotechnology. 2023-10-3

[8]
Immunometabolic reprogramming, another cancer hallmark.

Front Immunol. 2023

[9]
Proof of concept nanotechnological approach to in vitro targeting of malignant melanoma for enhanced immune checkpoint inhibition.

Sci Rep. 2023-5-8

[10]
Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies.

Pharmaceutics. 2023-1-28

本文引用的文献

[1]
Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy.

Sci Bull (Beijing). 2021-2-26

[2]
High-Z-Sensitized Radiotherapy Synergizes with the Intervention of the Pentose Phosphate Pathway for In Situ Tumor Vaccination.

Adv Mater. 2022-4

[3]
Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis.

Nat Commun. 2021-12-9

[4]
Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy.

Nat Commun. 2021-10-28

[5]
Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy.

Front Oncol. 2021-9-23

[6]
Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy.

Cancer Discov. 2022-1

[7]
Development of D-melittin polymeric nanoparticles for anti-cancer treatment.

Biomaterials. 2021-10

[8]
Noncanonical Amino Acids for Hypoxia-Responsive Peptide Self-Assembly and Fluorescence.

J Am Chem Soc. 2021-9-1

[9]
Determining PD-L1 Status in Patients With Triple-Negative Breast Cancer: Lessons Learned From IMpassion130.

J Natl Cancer Inst. 2022-5-9

[10]
Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy.

Asian J Pharm Sci. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索