SegPC-2021:一项关于从微观图像中分割多发性骨髓瘤浆细胞的挑战与数据集。

SegPC-2021: A challenge & dataset on segmentation of Multiple Myeloma plasma cells from microscopic images.

作者信息

Gupta Anubha, Gehlot Shiv, Goswami Shubham, Motwani Sachin, Gupta Ritu, Faura Álvaro García, Štepec Dejan, Martinčič Tomaž, Azad Reza, Merhof Dorit, Bozorgpour Afshin, Azad Babak, Sulaiman Alaa, Pandey Deepanshu, Gupta Pradyumna, Bhattacharya Sumit, Sinha Aman, Agarwal Rohit, Qiu Xinyun, Zhang Yucheng, Fan Ming, Park Yoonbeom, Lee Daehong, Park Joon Sik, Lee Kwangyeol, Ye Jaehyung

机构信息

SBILab, Department of ECE, IIIT-Delhi, New Delhi, 110020, India.

SBILab, Department of ECE, IIIT-Delhi, New Delhi, 110020, India.

出版信息

Med Image Anal. 2023 Jan;83:102677. doi: 10.1016/j.media.2022.102677. Epub 2022 Nov 2.

Abstract

Multiple Myeloma (MM) is an emerging ailment of global concern. Its diagnosis at the early stages is critical for recovery. Therefore, efforts are underway to produce digital pathology tools with human-level intelligence that are efficient, scalable, accessible, and cost-effective. Following the trend, a medical imaging challenge on "Segmentation of Multiple Myeloma Plasma Cells in Microscopic Images (SegPC-2021)" was organized at the IEEE International Symposium on Biomedical Imaging (ISBI), 2021, France. The challenge addressed the problem of cell segmentation in microscopic images captured from the slides prepared from the bone marrow aspirate of patients diagnosed with Multiple Myeloma. The challenge released a total of 775 images with 690 and 85 images of sizes 2040×1536 and 1920×2560 pixels, respectively, captured from two different (microscope and camera) setups. The participants had to segment the plasma cells with a separate label on each cell's nucleus and cytoplasm. This problem comprises many challenges, including a reduced color contrast between the cytoplasm and the background, and the clustering of cells with a feeble boundary separation of individual cells. To our knowledge, the SegPC-2021 challenge dataset is the largest publicly available annotated data on plasma cell segmentation in MM so far. The challenge targets a semi-automated tool to ensure the supervision of medical experts. It was conducted for a span of five months, from November 2020 to April 2021. Initially, the data was shared with 696 people from 52 teams, of which 41 teams submitted the results of their models on the evaluation portal in the validation phase. Similarly, 20 teams qualified for the last round, of which 16 teams submitted the results in the final test phase. All the top-5 teams employed DL-based approaches, and the best mIoU obtained on the final test set of 277 microscopic images was 0.9389. All these five models have been analyzed and discussed in detail. This challenge task is a step towards the target of creating an automated MM diagnostic tool.

摘要

多发性骨髓瘤(MM)是一种日益受到全球关注的疾病。早期诊断对其康复至关重要。因此,人们正在努力开发具有人类水平智能的数字病理学工具,这些工具要高效、可扩展、易于使用且具有成本效益。顺应这一趋势,2021年在法国举行的IEEE国际生物医学成像研讨会(ISBI)上组织了一场关于“显微镜图像中多发性骨髓瘤浆细胞分割(SegPC - 2021)”的医学成像挑战。该挑战解决了从被诊断为多发性骨髓瘤患者的骨髓穿刺涂片制备的载玻片上捕获的显微镜图像中的细胞分割问题。该挑战共发布了775张图像,其中690张和85张图像的尺寸分别为2040×1536像素和1920×2560像素,这些图像是从两种不同的(显微镜和相机)设置中捕获的。参与者必须在每个细胞的细胞核和细胞质上分别用单独的标签分割浆细胞。这个问题包含许多挑战,包括细胞质与背景之间颜色对比度降低,以及细胞聚集且单个细胞边界分离微弱。据我们所知,SegPC - 2021挑战数据集是迄今为止关于MM中浆细胞分割的最大的公开可用注释数据。该挑战的目标是一个半自动工具,以确保医学专家的监督。它从2020年11月持续到2021年4月,为期五个月。最初,数据与来自52个团队的696人共享,其中41个团队在验证阶段在评估平台上提交了他们模型的结果。同样,20个团队进入了最后一轮,其中16个团队在最终测试阶段提交了结果。所有排名前5的团队都采用了基于深度学习的方法,在277张显微镜图像的最终测试集上获得的最佳平均交并比(mIoU)为0.9389。对所有这五个模型都进行了详细的分析和讨论。这项挑战任务是朝着创建自动化MM诊断工具的目标迈出的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索