Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Nat Methods. 2024 Jun;21(6):1103-1113. doi: 10.1038/s41592-024-02233-6. Epub 2024 Mar 26.
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
细胞分割是显微镜图像中定量单细胞分析的关键步骤。现有的细胞分割方法通常针对特定模式或需要手动干预来指定不同实验设置中的超参数。在这里,我们提出了一个多模态细胞分割基准,包括来自 50 多个不同生物实验的 1500 多张标记图像。排名靠前的参与者开发了一种基于 Transformer 的深度学习算法,不仅超越了现有方法,而且还可以应用于不同成像平台和组织类型的显微镜图像,而无需手动参数调整。该基准和改进的算法为显微镜成像中的更准确和通用的细胞分析提供了有前景的途径。
Nat Methods. 2024-6
IEEE Trans Neural Netw Learn Syst. 2024-6
bioRxiv. 2025-8-23
Npj Imaging. 2025-6-26
Nat Methods. 2024-2
Nat Commun. 2024-1-22
Nat Methods. 2024-2
Nat Methods. 2023-7
Nat Methods. 2023-7
Nat Methods. 2022-12