Suppr超能文献

多模态细胞分割挑战赛:迈向通用解决方案。

The multimodality cell segmentation challenge: toward universal solutions.

机构信息

Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

出版信息

Nat Methods. 2024 Jun;21(6):1103-1113. doi: 10.1038/s41592-024-02233-6. Epub 2024 Mar 26.

Abstract

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

摘要

细胞分割是显微镜图像中定量单细胞分析的关键步骤。现有的细胞分割方法通常针对特定模式或需要手动干预来指定不同实验设置中的超参数。在这里,我们提出了一个多模态细胞分割基准,包括来自 50 多个不同生物实验的 1500 多张标记图像。排名靠前的参与者开发了一种基于 Transformer 的深度学习算法,不仅超越了现有方法,而且还可以应用于不同成像平台和组织类型的显微镜图像,而无需手动参数调整。该基准和改进的算法为显微镜成像中的更准确和通用的细胞分析提供了有前景的途径。

相似文献

1

引用本文的文献

本文引用的文献

1
Metrics reloaded: recommendations for image analysis validation.重新加载指标:图像分析验证的建议。
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
2
Segment anything in medical images.在医学图像中分割任何内容。
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
4
Segmentation metric misinterpretations in bioimage analysis.生物影像分析中的分割度量误读。
Nat Methods. 2024 Feb;21(2):213-216. doi: 10.1038/s41592-023-01942-8. Epub 2023 Jul 27.
5
Towards foundation models of biological image segmentation.迈向生物图像分割的基础模型。
Nat Methods. 2023 Jul;20(7):953-955. doi: 10.1038/s41592-023-01885-0.
6
The Cell Tracking Challenge: 10 years of objective benchmarking.细胞追踪挑战赛:10 年客观基准测试。
Nat Methods. 2023 Jul;20(7):1010-1020. doi: 10.1038/s41592-023-01879-y. Epub 2023 May 18.
10
Cellpose 2.0: how to train your own model.Cellpose 2.0:如何训练自己的模型。
Nat Methods. 2022 Dec;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4. Epub 2022 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验