文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态细胞分割挑战赛:迈向通用解决方案。

The multimodality cell segmentation challenge: toward universal solutions.

机构信息

Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

出版信息

Nat Methods. 2024 Jun;21(6):1103-1113. doi: 10.1038/s41592-024-02233-6. Epub 2024 Mar 26.


DOI:10.1038/s41592-024-02233-6
PMID:38532015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11210294/
Abstract

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

摘要

细胞分割是显微镜图像中定量单细胞分析的关键步骤。现有的细胞分割方法通常针对特定模式或需要手动干预来指定不同实验设置中的超参数。在这里,我们提出了一个多模态细胞分割基准,包括来自 50 多个不同生物实验的 1500 多张标记图像。排名靠前的参与者开发了一种基于 Transformer 的深度学习算法,不仅超越了现有方法,而且还可以应用于不同成像平台和组织类型的显微镜图像,而无需手动参数调整。该基准和改进的算法为显微镜成像中的更准确和通用的细胞分析提供了有前景的途径。

相似文献

[1]
The multimodality cell segmentation challenge: toward universal solutions.

Nat Methods. 2024-6

[2]
Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.

Elife. 2021-1-18

[3]
SC-Track: a robust cell-tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations.

Brief Bioinform. 2024-3-27

[4]
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images.

Sci Rep. 2025-2-14

[5]
Attention-Guided Residual U-Net with SE Connection and ASPP for Watershed-Based Cell Segmentation in Microscopy Images.

J Comput Biol. 2025-2

[6]
A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.

J Appl Clin Med Phys. 2024-3

[7]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[8]
A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting.

IEEE Trans Neural Netw Learn Syst. 2024-6

[9]
Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy.

PLoS One. 2020

[10]
Automated cell boundary and 3D nuclear segmentation of cells in suspension.

Sci Rep. 2019-7-15

引用本文的文献

[1]
MCA: A Multicellular analysis Calcium Imaging toolbox for ImageJ.

bioRxiv. 2025-8-23

[2]
VNC-Dist: A machine learning-based semi-automated pipeline for quantification of neuronal position in the C. elegans ventral nerve cord.

PLoS One. 2025-8-28

[3]
Using transcripts to refine image based cell segmentation with FastReseg.

Sci Rep. 2025-8-20

[4]
Clinical effect of unilateral biportal minimally invasive surgery in the treatment of patients with spinal degenerative diseases based on intelligent multimodal reconstruction technology.

Front Med (Lausanne). 2025-7-10

[5]
Rethinking deep learning in bioimaging through a data centric lens.

Npj Imaging. 2025-6-26

[6]
CellBinDB: a large-scale multimodal annotated dataset for cell segmentation with benchmarking of universal models.

Gigascience. 2025-1-6

[7]
CellSeg3D, Self-supervised 3D cell segmentation for fluorescence microscopy.

Elife. 2025-6-24

[8]
Quantitative benchmarking of nuclear segmentation algorithms in multiplexed immunofluorescence imaging for translational studies.

Commun Biol. 2025-5-30

[9]
Local mean suppression filter for effective background identification in fluorescence images.

Comput Biol Med. 2025-6

[10]
Riemannian Manifolds for Biological Imaging Applications Based on Unsupervised Learning.

J Imaging. 2025-3-29

本文引用的文献

[1]
Metrics reloaded: recommendations for image analysis validation.

Nat Methods. 2024-2

[2]
Segment anything in medical images.

Nat Commun. 2024-1-22

[3]
CoNIC Challenge: Pushing the frontiers of nuclear detection, segmentation, classification and counting.

Med Image Anal. 2024-2

[4]
Segmentation metric misinterpretations in bioimage analysis.

Nat Methods. 2024-2

[5]
Towards foundation models of biological image segmentation.

Nat Methods. 2023-7

[6]
The Cell Tracking Challenge: 10 years of objective benchmarking.

Nat Methods. 2023-7

[7]
Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging.

Nat Methods. 2023-3

[8]
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.

Cell. 2023-1-19

[9]
SegPC-2021: A challenge & dataset on segmentation of Multiple Myeloma plasma cells from microscopic images.

Med Image Anal. 2023-1

[10]
Cellpose 2.0: how to train your own model.

Nat Methods. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索