Suppr超能文献

PAIP 2019:肝癌分割挑战赛。

PAIP 2019: Liver cancer segmentation challenge.

机构信息

Department of Biomedical Engineering, Seoul National University Hospital, Seoul, South Korea.

School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.

出版信息

Med Image Anal. 2021 Jan;67:101854. doi: 10.1016/j.media.2020.101854. Epub 2020 Oct 8.

Abstract

Pathology Artificial Intelligence Platform (PAIP) is a free research platform in support of pathological artificial intelligence (AI). The main goal of the platform is to construct a high-quality pathology learning data set that will allow greater accessibility. The PAIP Liver Cancer Segmentation Challenge, organized in conjunction with the Medical Image Computing and Computer Assisted Intervention Society (MICCAI 2019), is the first image analysis challenge to apply PAIP datasets. The goal of the challenge was to evaluate new and existing algorithms for automated detection of liver cancer in whole-slide images (WSIs). Additionally, the PAIP of this year attempted to address potential future problems of AI applicability in clinical settings. In the challenge, participants were asked to use analytical data and statistical metrics to evaluate the performance of automated algorithms in two different tasks. The participants were given the two different tasks: Task 1 involved investigating Liver Cancer Segmentation and Task 2 involved investigating Viable Tumor Burden Estimation. There was a strong correlation between high performance of teams on both tasks, in which teams that performed well on Task 1 also performed well on Task 2. After evaluation, we summarized the top 11 team's algorithms. We then gave pathological implications on the easily predicted images for cancer segmentation and the challenging images for viable tumor burden estimation. Out of the 231 participants of the PAIP challenge datasets, a total of 64 were submitted from 28 team participants. The submitted algorithms predicted the automatic segmentation on the liver cancer with WSIs to an accuracy of a score estimation of 0.78. The PAIP challenge was created in an effort to combat the lack of research that has been done to address Liver cancer using digital pathology. It remains unclear of how the applicability of AI algorithms created during the challenge can affect clinical diagnoses. However, the results of this dataset and evaluation metric provided has the potential to aid the development and benchmarking of cancer diagnosis and segmentation.

摘要

病理学人工智能平台(PAIP)是一个免费的研究平台,支持病理学人工智能(AI)。该平台的主要目标是构建一个高质量的病理学学习数据集,以提高可访问性。PAIP 肝癌分割挑战赛是与医学图像计算和计算机辅助干预学会(MICCAI 2019)联合组织的第一个应用 PAIP 数据集的图像分析挑战赛。该挑战赛的目标是评估新的和现有的算法,以实现对全切片图像(WSI)中肝癌的自动检测。此外,PAIP 今年还试图解决人工智能在临床环境中应用的潜在未来问题。在挑战赛中,参与者被要求使用分析数据和统计指标来评估两种不同任务中自动化算法的性能。参与者被分配了两个不同的任务:任务 1 涉及肝癌分割,任务 2 涉及存活肿瘤负担估计。在这两个任务中,表现出色的团队之间存在很强的相关性,在这两个任务中表现出色的团队在任务 2中也表现出色。评估后,我们总结了排名前 11 的团队的算法。然后,我们对癌症分割中易于预测的图像和有活力的肿瘤负担估计中具有挑战性的图像进行了病理意义上的解释。在 PAIP 挑战赛数据集中,共有 231 名参与者,其中共有 64 名来自 28 个团队的参与者提交了算法。提交的算法对 WSI 上的肝癌自动分割进行了预测,其准确性得分为 0.78。PAIP 挑战赛的创建是为了弥补使用数字病理学解决肝癌问题的研究不足。目前还不清楚挑战赛中创建的人工智能算法的适用性如何影响临床诊断。然而,该数据集和评估指标的结果有可能有助于癌症诊断和分割的开发和基准测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验