Faculty of Automation, Huaiyin Institute of Technology, Huai'an 223003, China.
Faculty of Automation, Huaiyin Institute of Technology, Huai'an 223003, China; Jiangsu Permanent Magnet Motor Engineering Research Center, Huaiyin Institute of Technology, Huai'an 223003, China.
ISA Trans. 2023 May;136:139-151. doi: 10.1016/j.isatra.2022.10.044. Epub 2022 Nov 2.
Accurate and reliable measurement of key biological parameters during penicillin fermentation is of great significance for improving penicillin production. In this research context, a new hybrid soft sensor model method based on RF-IHHO-LSTM (random forest-improved Harris hawks optimization-long short-term memory) is proposed for penicillin fermentation processes. Firstly, random forest (RF) is used for feature selection of the auxiliary variables for penicillin. Next, improvements are made for the Harris hawks optimization (HHO) algorithm, including using elite opposition-based learning strategy (EOBL) in initialization to enhance the population diversity, and using golden sine algorithm (Gold-SA) in the search strategy to make the algorithm accelerate convergence. Then the long short-term memory (LSTM) network is constructed to build a soft sensor model of penicillin fermentation processes. Finally, the hybrid soft sensor model is used to the Pensim platform in simulation experimental research. The simulation test results show that the established soft sensor model, with high accuracy of measurement and good effect, can meet the actual requirements of engineering.
在青霉素发酵过程中准确可靠地测量关键生物参数对于提高青霉素产量具有重要意义。在这一研究背景下,针对青霉素发酵过程,提出了一种基于 RF-IHHO-LSTM(随机森林-改进的哈里斯鹰优化-长短期记忆)的新型混合软传感器模型方法。首先,利用随机森林(RF)对青霉素辅助变量进行特征选择。其次,对哈里斯鹰优化(HHO)算法进行改进,包括在初始化时使用精英反对意见学习策略(EOBL)来增强种群多样性,以及在搜索策略中使用黄金正弦算法(Gold-SA)来加速算法的收敛。然后构建长短期记忆(LSTM)网络,以构建青霉素发酵过程的软传感器模型。最后,将混合软传感器模型用于 Pensim 平台进行仿真实验研究。仿真测试结果表明,所建立的软传感器模型具有测量精度高、效果好的特点,能够满足工程实际需求。