Suppr超能文献

在肺癌病因和风险综合分析(INTEGRAL)计划中进行生物标志物发现和验证的设计和方法学考虑。

Design and methodological considerations for biomarker discovery and validation in the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Program.

机构信息

Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.

Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.

出版信息

Ann Epidemiol. 2023 Jan;77:1-12. doi: 10.1016/j.annepidem.2022.10.014. Epub 2022 Oct 29.

Abstract

The Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) program is an NCI-funded initiative with an objective to develop tools to optimize low-dose CT (LDCT) lung cancer screening. Here, we describe the rationale and design for the Risk Biomarker and Nodule Malignancy projects within INTEGRAL. The overarching goal of these projects is to systematically investigate circulating protein markers to include on a panel for use (i) pre-LDCT, to identify people likely to benefit from screening, and (ii) post-LDCT, to differentiate benign versus malignant nodules. To identify informative proteins, the Risk Biomarker project measured 1161 proteins in a nested-case control study within 2 prospective cohorts (n = 252 lung cancer cases and 252 controls) and replicated associations for a subset of proteins in 4 cohorts (n = 479 cases and 479 controls). Eligible participants had a current or former history of smoking and cases were diagnosed up to 3 years following blood draw. The Nodule Malignancy project measured 1078 proteins among participants with a heavy smoking history within four LDCT screening studies (n = 425 cases diagnosed up to 5 years following blood draw, 430 benign-nodule controls, and 398 nodule-free controls). The INTEGRAL panel will enable absolute quantification of 21 proteins. We will evaluate its performance in the Risk Biomarker project using a case-cohort study including 14 cohorts (n = 1696 cases and 2926 subcohort representatives), and in the Nodule Malignancy project within five LDCT screening studies (n = 675 cases, 680 benign-nodule controls, and 648 nodule-free controls). Future progress to advance lung cancer early detection biomarkers will require carefully designed validation, translational, and comparative studies.

摘要

肺癌病因与风险综合分析(INTEGRAL)计划是一项由 NCI 资助的计划,旨在开发优化低剂量 CT(LDCT)肺癌筛查的工具。在这里,我们描述了 INTEGRAL 中风险生物标志物和结节恶性肿瘤项目的基本原理和设计。这些项目的总体目标是系统地研究循环蛋白标志物,以便将其纳入一个用于(i)LDCT 前,识别可能受益于筛查的人群,以及(ii)LDCT 后,区分良性和恶性结节的面板。为了确定有信息的蛋白质,风险生物标志物项目在两个前瞻性队列(n=252 例肺癌病例和 252 例对照)的嵌套病例对照研究中测量了 1161 种蛋白质,并在 4 个队列(n=479 例病例和 479 例对照)中复制了部分蛋白质的关联。合格的参与者有当前或过去的吸烟史,病例在采血后 3 年内确诊。结节恶性肿瘤项目在四项 LDCT 筛查研究中测量了有大量吸烟史的参与者中的 1078 种蛋白质(n=425 例在采血后 5 年内确诊的病例、430 例良性结节对照和 398 例无结节对照)。INTEGRAL 面板将能够对 21 种蛋白质进行绝对定量。我们将使用包括 14 个队列的病例-队列研究(n=1696 例病例和 2926 个亚队列代表)在风险生物标志物项目中评估其性能,并在五个 LDCT 筛查研究中的结节恶性肿瘤项目中评估其性能(n=675 例病例、680 例良性结节对照和 648 例无结节对照)。未来推进肺癌早期检测生物标志物的进展将需要精心设计的验证、转化和比较研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aae9/9835888/4e4078e74204/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验