International Agency for Research on Cancer, Lyon, France.
The Institute of Cancer Research, London, UK.
Br J Cancer. 2021 Jun;124(12):2026-2034. doi: 10.1038/s41416-021-01278-0. Epub 2021 Apr 12.
The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK.
We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC).
Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%).
In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.
英国国家医疗服务体系(NHS)使用两种风险预测模型,即 PLCOm2012 和利物浦肺项目-v2(LLPv2),对肺癌筛查的个体进行资格分类。然而,尚无研究比较英国的肺癌风险模型性能。
我们分析了英国生物库(N=217199)、EPIC-UK(N=30813)和世代研究(N=25777)中年龄在 40-80 岁的现吸烟者和前吸烟者。我们量化了模型校准(预期病例与观察病例之比,E/O)和区分度(AUC)。
英国生物库中的风险区分度以肺癌死亡风险评估工具(LCDRAT,AUC=0.82,95%CI=0.81-0.84)为最佳,其次是 LCRAT(AUC=0.81,95%CI=0.79-0.82)和 Bach 模型(AUC=0.80,95%CI=0.79-0.81)。EPIC-UK 和世代研究的结果相似。所有模型在所有队列中均高估了风险,英国生物库中的 E/O 范围从 LLPv3 的 1.20(95%CI=1.14-1.27)到 LLPv2 的 2.16(95%CI=2.05-2.28)。高估程度随地区社会经济地位的升高而增加。在联合队列中,USPSTF 2013 标准将 50.7%的未来病例归类为筛查合格。LCDRAT 和 LCRAT 分别识别出 60.9%,其次是 PLCOm2012(58.3%)、Bach(58.0%)、LLPv3(56.6%)和 LLPv2(53.7%)。
在英国队列中,风险预测模型将未来肺癌病例分类为筛查合格的能力以 LCDRAT/LCRAT 最佳,PLCOm2012 非常好,而 LLPv2 最差。我们的研究结果强调了在特定国家验证预测工具的重要性。