Suppr超能文献

英国肺癌风险模型的比较性能,以确定肺癌筛查资格。

Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom.

机构信息

International Agency for Research on Cancer, Lyon, France.

The Institute of Cancer Research, London, UK.

出版信息

Br J Cancer. 2021 Jun;124(12):2026-2034. doi: 10.1038/s41416-021-01278-0. Epub 2021 Apr 12.

Abstract

BACKGROUND

The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK.

METHODS

We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC).

RESULTS

Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%).

CONCLUSION

In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.

摘要

背景

英国国家医疗服务体系(NHS)使用两种风险预测模型,即 PLCOm2012 和利物浦肺项目-v2(LLPv2),对肺癌筛查的个体进行资格分类。然而,尚无研究比较英国的肺癌风险模型性能。

方法

我们分析了英国生物库(N=217199)、EPIC-UK(N=30813)和世代研究(N=25777)中年龄在 40-80 岁的现吸烟者和前吸烟者。我们量化了模型校准(预期病例与观察病例之比,E/O)和区分度(AUC)。

结果

英国生物库中的风险区分度以肺癌死亡风险评估工具(LCDRAT,AUC=0.82,95%CI=0.81-0.84)为最佳,其次是 LCRAT(AUC=0.81,95%CI=0.79-0.82)和 Bach 模型(AUC=0.80,95%CI=0.79-0.81)。EPIC-UK 和世代研究的结果相似。所有模型在所有队列中均高估了风险,英国生物库中的 E/O 范围从 LLPv3 的 1.20(95%CI=1.14-1.27)到 LLPv2 的 2.16(95%CI=2.05-2.28)。高估程度随地区社会经济地位的升高而增加。在联合队列中,USPSTF 2013 标准将 50.7%的未来病例归类为筛查合格。LCDRAT 和 LCRAT 分别识别出 60.9%,其次是 PLCOm2012(58.3%)、Bach(58.0%)、LLPv3(56.6%)和 LLPv2(53.7%)。

结论

在英国队列中,风险预测模型将未来肺癌病例分类为筛查合格的能力以 LCDRAT/LCRAT 最佳,PLCOm2012 非常好,而 LLPv2 最差。我们的研究结果强调了在特定国家验证预测工具的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af8/8184952/bf1d01902d33/41416_2021_1278_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验