Tan Youhai, Dai Lingxue, Huang Weifeng, Guo Yinfeng, Zheng Shuangjia, Lei Jinping, Chen Hongming, Yang Yuedong
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou510006, China.
School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou510006, China.
J Chem Inf Model. 2022 Dec 12;62(23):5907-5917. doi: 10.1021/acs.jcim.2c00982. Epub 2022 Nov 20.
Fragment-based drug discovery is a widely used strategy for drug design in both academic and pharmaceutical industries. Although fragments can be linked to generate candidate compounds by the latest deep generative models, generating linkers with specified attributes remains underdeveloped. In this study, we presented a novel framework, DRlinker, to control fragment linking toward compounds with given attributes through reinforcement learning. The method has been shown to be effective for many tasks from controlling the linker length and log , optimizing predicted bioactivity of compounds, to various multiobjective tasks. Specifically, our model successfully generated 91.0% and 93.9% of compounds complying with the desired linker length and log and improved the 7.5 pChEMBL value in bioactivity optimization. Finally, a quasi-scaffold-hopping study revealed that DRlinker could generate nearly 30% molecules with high 3D similarity but low 2D similarity to the lead inhibitor, demonstrating the benefits and applicability of DRlinker in actual fragment-based drug design.
基于片段的药物发现是学术界和制药行业广泛使用的药物设计策略。尽管可以通过最新的深度生成模型将片段连接起来以生成候选化合物,但生成具有特定属性的连接子仍未得到充分发展。在本研究中,我们提出了一种新颖的框架DRlinker,通过强化学习来控制片段连接以生成具有给定属性的化合物。该方法已被证明在许多任务中都有效,从控制连接子长度和log 、优化化合物的预测生物活性到各种多目标任务。具体而言,我们的模型成功生成了91.0%和93.9%符合所需连接子长度和log 的化合物,并在生物活性优化中提高了7.5个pChEMBL值。最后,一项准骨架跳跃研究表明,DRlinker可以生成近30%与先导抑制剂具有高3D相似性但低2D相似性的分子,证明了DRlinker在实际基于片段的药物设计中的优势和适用性。