Bloudek Brian, Wirtz Heidi S, Hepp Zsolt, Timmons Jack, Bloudek Lisa, McKay Caroline, Galsky Matthew D
Curta Inc., Seattle, WA, USA.
Seagen Inc., Bothell, WA, USA.
Clin Epidemiol. 2022 Nov 14;14:1375-1386. doi: 10.2147/CLEP.S377093. eCollection 2022.
We demonstrate a new model framework as an innovative approach to more accurately estimate and project prevalence and survival outcomes in oncology.
We developed an oncology simulation model (OSM) framework that offers a customizable, dynamic simulation model to generate population-level, country-specific estimates of prevalence, incidence of patients progressing from earlier stages (progression-based incidence), and survival in oncology. The framework, a continuous dynamic Markov cohort model, was implemented in Microsoft Excel. The simulation runs continuously through a prespecified calendar time range. Time-varying incidence, treatment patterns, treatment rates, and treatment pathways are specified by year to account for guideline-directed changes in standard of care and real-world trends, as well as newly approved clinical treatments. Patient cohorts transition between defined health states, with transitions informed by progression-free survival and overall survival as reported in published literature.
Model outputs include point prevalence and period prevalence, with options for highly granular prevalence predictions by disease stage, treatment pathway, or time of diagnosis. As a use case, we leveraged the OSM framework to estimate the prevalence of bladder cancer in the United States.
The OSM is a robust model that builds upon existing modeling practices to offer an innovative, transparent approach in estimating prevalence, progression-based incidence, and survival for oncologic conditions. The OSM combines and extends the capabilities of other common health-economic modeling approaches to provide a detailed and comprehensive modeling framework to estimate prevalence in oncology using simulation modeling and to assess the impacts of new treatments on prevalence over time.
我们展示一种新的模型框架,作为一种创新方法,用于更准确地估计和预测肿瘤学中的患病率及生存结果。
我们开发了一种肿瘤学模拟模型(OSM)框架,该框架提供了一个可定制的动态模拟模型,以生成肿瘤学中基于人群水平、特定国家的患病率、早期阶段进展患者的发病率(基于进展的发病率)和生存率估计值。该框架是一个连续动态马尔可夫队列模型,在Microsoft Excel中实现。模拟在预先指定的日历时间范围内持续运行。按年份指定随时间变化的发病率、治疗模式、治疗率和治疗途径,以考虑护理标准的指南导向变化和实际趋势,以及新批准的临床治疗方法。患者队列在定义的健康状态之间转换,转换情况根据已发表文献中报道的无进展生存期和总生存期来确定。
模型输出包括时点患病率和期间患病率,并可按疾病阶段、治疗途径或诊断时间进行高度细化的患病率预测。作为一个应用案例,我们利用OSM框架来估计美国膀胱癌的患病率。
OSM是一个强大的模型,它在现有建模实践的基础上,提供了一种创新、透明的方法来估计肿瘤疾病的患病率、基于进展的发病率和生存率。OSM结合并扩展了其他常见健康经济建模方法的功能,以提供一个详细而全面的建模框架,使用模拟建模来估计肿瘤学中的患病率,并评估新治疗方法随时间推移对患病率的影响。