Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Talanta. 2020 May 15;212:120782. doi: 10.1016/j.talanta.2020.120782. Epub 2020 Jan 30.
Development of optical nanobiosensors has emerged as one of the most important bioresearch areas of interest over the past decades especially in the modern innovations in the design and utilization of sensing platforms. The application of nanobiosensors has been accelerated with the introduction of plasmonic NPs, which overcome the most of the limitations in the case of conventional optical nanobiosensors. Since the plasmonic AuNPs-based nanobiosensors provide high potential achievements to develop promising platforms in fully integrated multiplex assays, some well-developed investigations are clearly required to improve the current technologies and integration of multiple signal inputs. Therefore, in this literature, we summarized the performance and achievements of optical nanobiosensors according to plasmonic rules of AuNPs, including SPR, LSPR, SERS and chiroptical phenomena. Also, we investigated the effects of the physicochemical properties of AuNPs such as size, shape, composition, and assembly on the plasmonic signal propagation in AuNPs-based nanobiosensors. Moreover, we presented an overview on the current state of plasmonic AuNPs-based nanobiosensors in the biomedical activities. Besides, this paper looks at the current and future challenges and opportunities of ongoing efforts to achieve the potential applications of AuNPs-based optical plasmonic nanobiosensors in integration with other nanomaterials. Taken together, the main focus of this paper is to provide some applicable information to develop current methodologies in fabrication of potential AuNPs-based nanobiosensors for detection of a wide range of analytes.
光学纳米生物传感器的发展已经成为过去几十年中最受关注的生物研究领域之一,尤其是在传感平台的设计和利用方面的现代创新。随着等离子体纳米粒子(plasmonic NPs)的引入,纳米生物传感器的应用得到了加速,等离子体纳米粒子克服了传统光学纳米生物传感器的大多数限制。由于基于等离子体金纳米粒子(AuNPs)的纳米生物传感器为开发全集成多路复用分析的有前途的平台提供了高潜力的成果,因此需要进行一些成熟的研究来改进当前技术和多种信号输入的集成。因此,在本文中,我们根据 AuNPs 的等离子体规则总结了光学纳米生物传感器的性能和成果,包括 SPR、LSPR、SERS 和手性光学现象。此外,我们研究了 AuNPs 的物理化学性质,如尺寸、形状、组成和组装,对基于 AuNPs 的纳米生物传感器中等离子体信号传播的影响。此外,我们概述了等离子体 AuNPs 基纳米生物传感器在生物医学活动中的当前状态。此外,本文还探讨了当前和未来的挑战和机遇,以及为实现基于 AuNPs 的光学等离子体纳米生物传感器与其他纳米材料集成的潜在应用而正在进行的努力。总之,本文的主要重点是提供一些适用的信息,以开发基于 AuNPs 的纳米生物传感器的当前方法,用于检测广泛的分析物。