文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fishery waste valorization: Sulfated ZrO as a heterogeneous catalyst for chitin and chitosan depolymerization.

作者信息

Pappalardo Valeria, Remadi Yassine, Cipolla Laura, Scotti Nicola, Ravasio Nicoletta, Zaccheria Federica

机构信息

CNR Institute of Chemical Sciences and Technologies "G. Natta", Milano, Italy.

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.

出版信息

Front Chem. 2022 Nov 2;10:1057461. doi: 10.3389/fchem.2022.1057461. eCollection 2022.


DOI:10.3389/fchem.2022.1057461
PMID:36405325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9666760/
Abstract

Chitin and chitosan are abundant unique sources of biologically-fixed nitrogen mainly derived from residues of the fishery productive chain. Their high potential as nitrogen-based highly added-value platform molecules is still largely unexploited and a catalytic way for their valorization would be strongly desirable within a biorefinery concept. Here we report our results obtained with a series of heterogeneous catalysts in the depolymerization of chitosan and chitin to acetylglucosamine. Copper catalysts supported on SiO, SiO-AlO, SiO-ZrO, ZrO and the corresponding bare oxides/mixed oxides were tested, together with a sulfated zirconia system (ZrO-SOH) that revealed to be extremely selective towards glucosamine, both for chitosan and chitin, thus giving pretty high yields with respect to the values reported so far (44% and 21%, respectively). The use of a heterogeneous catalyst alone, without the need of any additives or the combination with a mineral acid, makes these results remarkable.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/34b23fd526ee/fchem-10-1057461-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/8d85126dfa7b/fchem-10-1057461-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/bf124c71524f/FCHEM_fchem-2022-1057461_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/f0b3caa31c0b/fchem-10-1057461-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/6b9b7c0dba53/fchem-10-1057461-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/ce6695f83e7b/fchem-10-1057461-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/4ffc121611fd/fchem-10-1057461-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/8101de11afec/fchem-10-1057461-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/cf563e0a4f1f/FCHEM_fchem-2022-1057461_wc_sch2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/34b23fd526ee/fchem-10-1057461-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/8d85126dfa7b/fchem-10-1057461-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/bf124c71524f/FCHEM_fchem-2022-1057461_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/f0b3caa31c0b/fchem-10-1057461-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/6b9b7c0dba53/fchem-10-1057461-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/ce6695f83e7b/fchem-10-1057461-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/4ffc121611fd/fchem-10-1057461-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/8101de11afec/fchem-10-1057461-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/cf563e0a4f1f/FCHEM_fchem-2022-1057461_wc_sch2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472a/9666760/34b23fd526ee/fchem-10-1057461-g007.jpg

相似文献

[1]
Fishery waste valorization: Sulfated ZrO as a heterogeneous catalyst for chitin and chitosan depolymerization.

Front Chem. 2022-11-2

[2]
In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.

Sci Rep. 2023-6-22

[3]
Towards Shell Biorefinery: Advances in Chemical-Catalytic Conversion of Chitin Biomass to Organonitrogen Chemicals.

ChemSusChem. 2020-9-23

[4]
Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

J Nanosci Nanotechnol. 2015-7

[5]
Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO/ZrO catalysts.

J Colloid Interface Sci. 2022-2-15

[6]
[Preparation of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 solid acid catalyst and its catalytic activity to selective reduction of NO].

Huan Jing Ke Xue. 2008-6

[7]
Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on Mo/ZrO2-SiO2(Al2O3) catalysts.

Spectrochim Acta A Mol Biomol Spectrosc. 2001-10

[8]
Valorization of fishery industry waste: Chitosan extraction and its application in the industry.

MethodsX. 2024-8-5

[9]
Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process.

Proc Natl Acad Sci U S A. 2020-3-25

[10]
Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts.

ChemSusChem. 2018-2-8

引用本文的文献

[1]
Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications.

Mar Drugs. 2023-2-24

本文引用的文献

[1]
d-Glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst.

RSC Adv. 2018-2-1

[2]
Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction.

RSC Adv. 2018-1-16

[3]
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review.

Carbohydr Polym. 2022-7-1

[4]
Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin.

Phys Chem Chem Phys. 2021-8-4

[5]
Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants.

Carbohydr Polym. 2020-11-1

[6]
Facile Preparation of 3-Acetamido-5-acetylfuran from N-Acetyl-d-glucosamine by using Commercially Available Aluminum Salts.

ChemSusChem. 2020-6-8

[7]
Circular manufacturing of chitinous bio-composites via bioconversion of urban refuse.

Sci Rep. 2020-3-13

[8]
Mechanistic insights into controlled depolymerization of Chitosan using H-Mordenite.

Carbohydr Polym. 2019-11-11

[9]
Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides.

Front Bioeng Biotechnol. 2019-9-27

[10]
Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.

ChemSusChem. 2018-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索