Suppr超能文献

使用密集卷积神经网络和新型损失函数,基于计算机断层扫描图像的新冠肺炎预测增强框架。

Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function.

作者信息

Motwani Anand, Shukla Piyush Kumar, Pawar Mahesh, Kumar Manoj, Ghosh Uttam, Alnumay Waleed, Nayak Soumya Ranjan

机构信息

Faculty, School of Computing Science & Engineering, VIT Bhopal University, Sehore (MP), 466114, India.

Department of Computer Science & Engineering, University Institute of Technology, RGPV, Bhopal (MP), 462033, India.

出版信息

Comput Electr Eng. 2023 Jan;105:108479. doi: 10.1016/j.compeleceng.2022.108479. Epub 2022 Nov 14.

Abstract

Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.

摘要

最近的研究表明,计算机断层扫描(CT)扫描图像可以对新冠肺炎患者的病情进行特征描述。文献中已经提出了几种深度学习(DL)方法用于诊断,包括卷积神经网络(CNN)。但是,由于患者分类模型效率低下,“假阴性”的数量可能会危及生命。主要目标是改进模型,使其不会将“新冠”误诊为“非新冠”。本研究使用密集卷积神经网络(Dense-CNN)对患者进行有效分类。还使用了一种基于交叉熵的新型损失函数来提高卷积神经网络算法的收敛性。所提出的模型是在最近发布的一个大型数据集上构建和测试的。与知名模型进行的广泛研究和比较表明,所提出的方法比已知方法更有效。所提出的模型实现了93.78%的预测准确率,而假阴性率仅为6.5%。这种方法的显著优势是加快了新冠肺炎的诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e64c/9659516/41479446b396/ga1_lrg.jpg

相似文献

1
Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function.
Comput Electr Eng. 2023 Jan;105:108479. doi: 10.1016/j.compeleceng.2022.108479. Epub 2022 Nov 14.
2
An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network.
Comput Biol Med. 2022 May;144:105383. doi: 10.1016/j.compbiomed.2022.105383. Epub 2022 Mar 10.
4
COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images.
Artif Intell Med. 2022 Dec;134:102427. doi: 10.1016/j.artmed.2022.102427. Epub 2022 Oct 17.
5
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.
7
Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks.
Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1379-1389. doi: 10.1007/s10096-020-03901-z. Epub 2020 Apr 27.
8
Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio.
Comput Commun. 2021 Aug 1;176:234-248. doi: 10.1016/j.comcom.2021.06.011. Epub 2021 Jun 16.
9
Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method.
Comput Biol Med. 2021 Jul;134:104425. doi: 10.1016/j.compbiomed.2021.104425. Epub 2021 Apr 29.
10
Novel ensemble of optimized CNN and dynamic selection techniques for accurate Covid-19 screening using chest CT images.
Comput Biol Med. 2021 Oct;137:104835. doi: 10.1016/j.compbiomed.2021.104835. Epub 2021 Sep 6.

引用本文的文献

2
Deep learning models for CT image classification: a comprehensive literature review.
Quant Imaging Med Surg. 2025 Jan 2;15(1):962-1011. doi: 10.21037/qims-24-1400. Epub 2024 Dec 30.
4
An AI healthcare ecosystem framework for Covid-19 detection and forecasting using CronaSona.
Med Biol Eng Comput. 2024 Jul;62(7):1959-1979. doi: 10.1007/s11517-024-03058-3. Epub 2024 Mar 13.
6
Midwifery learning and forecasting: Predicting content demand with user-generated logs.
Artif Intell Med. 2023 Apr;138:102511. doi: 10.1016/j.artmed.2023.102511. Epub 2023 Feb 24.
7
IRCM-Caps: An X-ray image detection method for COVID-19.
Clin Respir J. 2023 May;17(5):364-373. doi: 10.1111/crj.13599. Epub 2023 Mar 15.
8
A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes.
Front Comput Neurosci. 2023 Feb 20;17:1110889. doi: 10.3389/fncom.2023.1110889. eCollection 2023.

本文引用的文献

1
Machine Learning Approach for Autonomous Detection and Classification of COVID-19 Virus.
Comput Electr Eng. 2022 Jul;101:108055. doi: 10.1016/j.compeleceng.2022.108055. Epub 2022 Apr 29.
2
COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network.
Health Inf Sci Syst. 2022 Jan 19;10(1):1. doi: 10.1007/s13755-021-00169-1. eCollection 2022 Dec.
4
ENResNet: A novel residual neural network for chest X-ray enhancement based COVID-19 detection.
Biomed Signal Process Control. 2022 Feb;72:103286. doi: 10.1016/j.bspc.2021.103286. Epub 2021 Nov 1.
5
Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification.
Pattern Recognit Lett. 2021 Nov;151:267-274. doi: 10.1016/j.patrec.2021.08.018. Epub 2021 Sep 22.
6
A novel deep learning based method for COVID-19 detection from CT image.
Biomed Signal Process Control. 2021 Sep;70:102987. doi: 10.1016/j.bspc.2021.102987. Epub 2021 Jul 21.
7
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
8
Fast convergence rates of deep neural networks for classification.
Neural Netw. 2021 Jun;138:179-197. doi: 10.1016/j.neunet.2021.02.012. Epub 2021 Feb 23.
9
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
10
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验