Suppr超能文献

寒冷环境温度对优秀冬季两项运动员不同身体部位热通量、皮肤温度和热感觉的影响。

Effect of cold ambient temperature on heat flux, skin temperature, and thermal sensation at different body parts in elite biathletes.

作者信息

Blokker Thomas, Bucher Elias, Steiner Thomas, Wehrlin Jon Peter

机构信息

Section for Elite Sport, Swiss Federal Institute of Sport, Magglingen, Switzerland.

出版信息

Front Sports Act Living. 2022 Nov 2;4:966203. doi: 10.3389/fspor.2022.966203. eCollection 2022.

Abstract

INTRODUCTION

When exercising in the cold, optimizing thermoregulation is essential to maintain performance. However, no study has investigated thermal parameters with wearable-based measurements in a field setting among elite Nordic skiers. Therefore, this study aimed to assess the thermal response and sensation measured at different body parts during exercise in a cold environment in biathletes.

METHODS

Thirteen Swiss national team biathletes (6 females, 7 males) performed two skiing bouts in the skating technique on two consecutive days (ambient temperature: -3.74 ± 2.32 °C) at 78 ± 4% of maximal heart rate. Heat flux (HF), core (T) and skin (T) temperature were measured with sensors placed on the thigh, back, anterior and lateral thorax. Thermal sensation (TS) was assessed three times for different body parts: in protective winter clothing, in a race suit before (PRE) and after exercise (POST).

RESULTS

HF demonstrated differences ( < 0.001) between sensor locations, with the thigh showing the highest heat loss (344 ± 37 kJ/m), followed by the back (269 ± 6 kJ/m), the lateral thorax (220 ± 47 kJ/m), and the anterior thorax (192 ± 37 kJ/m). T increased ( < 0.001). T decreased for all body parts ( < 0.001). Thigh T decreased more than for other body parts ( < 0.001). From PRE to POST, TS of the hands decreased ( < 0.01).

CONCLUSION

Biathletes skiing in a race suit at moderate intensity experience significant heat loss and a large drop in T, particularly at the quadriceps muscle. To support the optimal functioning of working muscles, body-part dependent differences in the thermal response should be considered for clothing strategy and for race suit design.

摘要

引言

在寒冷环境中运动时,优化体温调节对于维持运动表现至关重要。然而,尚无研究在精英北欧滑雪运动员的野外环境中,通过基于可穿戴设备的测量来研究热参数。因此,本研究旨在评估冬季两项运动员在寒冷环境中运动时不同身体部位的热反应和热感觉。

方法

13名瑞士国家队冬季两项运动员(6名女性,7名男性)在连续两天内以最大心率的78±4%进行了两次滑雪滑行(环境温度:-3.74±2.32°C)。使用放置在大腿、背部、胸部前侧和外侧的传感器测量热通量(HF)、核心温度(T)和皮肤温度(T)。针对不同身体部位,在穿着保暖冬季服装时、比赛服运动前(PRE)和运动后(POST)三次评估热感觉(TS)。

结果

HF在传感器位置之间存在差异(<0.001),大腿的热损失最高(344±37 kJ/m),其次是背部(269±6 kJ/m)、胸部外侧(220±47 kJ/m)和胸部前侧(192±37 kJ/m)。T升高(<0.001)。所有身体部位的T均下降(<每次评估热感觉(TS)。针对不同身体部位,在穿着保暖冬季服装时、比赛服运动前(PRE)和运动后(POST)三次评估热感觉(TS)。

结果

HF在传感器位置之间存在差异(<0.001),大腿的热损失最高(344±37 kJ/m),其次是背部(269±6 kJ/m)、胸部外侧(220±47 kJ/m)和胸部前侧(192±37 kJ/m)。T升高(<0.001)。所有身体部位的T均下降(<0.001)。大腿T的下降幅度大于其他身体部位(<0.001)。从PRE到POST,手部的TS下降(<0.01)。

结论

穿着比赛服以中等强度滑雪的冬季两项运动员会经历显著的热量损失和T的大幅下降,尤其是在股四头肌部位。为支持工作肌肉的最佳功能,在服装策略和比赛服设计中应考虑热反应的身体部位依赖性差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc31/9666787/a63412e924cb/fspor-04-966203-g0001.jpg

相似文献

1
Effect of cold ambient temperature on heat flux, skin temperature, and thermal sensation at different body parts in elite biathletes.
Front Sports Act Living. 2022 Nov 2;4:966203. doi: 10.3389/fspor.2022.966203. eCollection 2022.
3
The Effect of Compression Garments on Performance in Elite Winter Biathletes.
Int J Sports Physiol Perform. 2021 Jan 1;16(1):145-148. doi: 10.1123/ijspp.2019-0790. Epub 2020 Oct 1.
4
Thermoregulation and shivering responses in elite alpine skiers.
Eur J Sport Sci. 2021 Mar;21(3):400-411. doi: 10.1080/17461391.2020.1754470. Epub 2020 May 4.
7
Orderly recruitment of thermoeffectors in resting humans.
Am J Physiol Regul Integr Comp Physiol. 2018 Feb 1;314(2):R171-R180. doi: 10.1152/ajpregu.00324.2017. Epub 2017 Oct 11.
8
A Comparison of Frontal Theta Activity During Shooting among Biathletes and Cross-Country Skiers before and after Vigorous Exercise.
PLoS One. 2016 Mar 16;11(3):e0150461. doi: 10.1371/journal.pone.0150461. eCollection 2016.
10

本文引用的文献

1
Review of by Cheung and Ainslie.
Am J Physiol Regul Integr Comp Physiol. 2021 Aug 1;321(2):R139-R140. doi: 10.1152/ajpregu.00119.2021.
2
Effect of local cold application during exercise on gene expression related to mitochondrial homeostasis.
Appl Physiol Nutr Metab. 2021 Apr;46(4):318-324. doi: 10.1139/apnm-2020-0387. Epub 2020 Sep 22.
3
Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.
Auton Neurosci. 2016 Apr;196:63-74. doi: 10.1016/j.autneu.2016.02.009. Epub 2016 Feb 21.
4
Cold Stress Effects on Exposure Tolerance and Exercise Performance.
Compr Physiol. 2015 Dec 15;6(1):443-69. doi: 10.1002/cphy.c140081.
5
The Effects of Cold Environments on Double-Poling Performance and Economy in Male Cross-Country Skiers Wearing a Standard Racing Suit.
Int J Sports Physiol Perform. 2016 Sep;11(6):776-782. doi: 10.1123/ijspp.2015-0232. Epub 2016 Aug 24.
6
Female thermal sensitivity to hot and cold during rest and exercise.
Physiol Behav. 2015 Dec 1;152(Pt A):11-9. doi: 10.1016/j.physbeh.2015.08.032. Epub 2015 Sep 5.
7
Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue.
Compr Physiol. 2014 Apr;4(2):657-89. doi: 10.1002/cphy.c130012.
8
Effect of cold conditions on double poling sprint performance of well-trained male cross-country skiers.
J Strength Cond Res. 2013 Dec;27(12):3377-83. doi: 10.1519/JSC.0b013e3182915e7d.
9
Effect of ambient temperature on endurance performance while wearing cross-country skiing clothing.
Eur J Appl Physiol. 2012 Dec;112(12):3939-47. doi: 10.1007/s00421-012-2373-1. Epub 2012 Mar 17.
10
Endurance training and sprint performance in elite junior cross-country skiers.
J Strength Cond Res. 2011 May;25(5):1299-305. doi: 10.1519/JSC.0b013e3181d82d11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验