Suppr超能文献

多组学分析揭示了伴随重牧诱导的……矮化的分子变化。 (原文此处不完整,缺少具体物种等信息)

Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of .

作者信息

Wan Dongli, Wan Yongqing, Zhang Tongrui, Wang Ruigang, Ding Yong

机构信息

Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.

College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China.

出版信息

Front Plant Sci. 2022 Oct 4;13:995074. doi: 10.3389/fpls.2022.995074. eCollection 2022.

Abstract

Heavy grazing significantly reduces growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of . A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of . This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of and provides valuable information for restoration of the productivity in degraded grassland.

摘要

重度放牧显著降低生长。为了增强我们对植物对重度放牧反应的理解,我们对[植物名称]未放牧植株(NG)和重度放牧诱导的矮化植株(HG)的叶片进行了转录组学、蛋白质组学和代谢组学分析。HG组和NG组之间共有101种代谢物、167种蛋白质和1268个基因在丰度上存在差异。对差异积累代谢物(DAM)的京都基因与基因组百科全书通路分析表明,最富集的通路是黄酮和黄酮醇生物合成、色氨酸代谢以及苯丙烷生物合成。对这三条通路中的差异表达基因(DEG)、蛋白质和DAM进行了综合分析。重度放牧诱导的矮化降低了苯丙烷生物合成中富集的DAM的积累,其中四种DAM与木质素生物合成相关。相反,与NG植株相比,黄酮和黄酮醇生物合成以及色氨酸代谢中富集的所有DAM在HG中积累增加。在色氨酸代谢中富集的DAM中,有三种参与色氨酸依赖性吲哚-3-乙酸生物合成。这些通路中富集的一些DEG和蛋白质表现出不同的表达趋势。结果表明,这些通路在[植物名称]的生长调节和放牧相关胁迫适应中起重要作用。本研究丰富了对重度放牧诱导[植物名称]生长抑制机制的认识,并为退化草地生产力的恢复提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcfb/9673880/91c7e33b20cd/fpls-13-995074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验