Yu Yuanhui, Yang Miaomiao, Liu Xinya, Xia Yan, Hu Ruoqian, Xia Qingqing, Jing Danlong, Guo Qigao
Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
Front Plant Sci. 2022 Nov 3;13:1024515. doi: 10.3389/fpls.2022.1024515. eCollection 2022.
The WUSCHEL (WUS)-related homeobox () gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of genes have not been reported in perennial loquat. In this study, 18 genes were identified in the loquat genome. Chromosomal localization analysis showed that 18 genes were located on 12 of 17 chromosomes. Gene structure analysis showed that all genes contain introns, of which 11 genes contain untranslated regions. There are 8 pairs of segmental duplication genes and 0 pairs of tandem duplication genes in the loquat family, suggesting that segmental duplications might be the main reason for the expansion of the loquat family. A transcription factor gene named was isolated from loquat. The EjWUSa protein was localized in the nucleus. Protein interactions between EjWUSa with EjWUSa and EjSTM were verified. Compared with wild-type , the transgenic showed early flowering. Our study provides an important basis for further research on the function of genes and facilitates the molecular breeding of loquat early-flowering varieties.
WUSCHEL(WUS)相关同源异型盒()基因家族在干细胞维持、顶端分生组织形成、胚胎发育以及其他各种发育过程中起着至关重要的作用。然而,在多年生枇杷中尚未报道基因的鉴定和功能。在本研究中,在枇杷基因组中鉴定出18个基因。染色体定位分析表明,18个基因位于17条染色体中的12条上。基因结构分析表明,所有基因都含有内含子,其中11个基因含有非翻译区。枇杷家族中有8对片段重复基因和0对串联重复基因,这表明片段重复可能是枇杷家族扩张的主要原因。从枇杷中分离出一个名为的转录因子基因。EjWUSa蛋白定位于细胞核中。验证了EjWUSa与EjWUSa和EjSTM之间的蛋白质相互作用。与野生型相比,转基因显示出早花现象。我们的研究为进一步研究基因的功能提供了重要依据,并有助于枇杷早花品种的分子育种。