Suppr超能文献

复值忆阻递归神经网络的指数稳定性。

Exponential Stability of Complex-Valued Memristive Recurrent Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Mar;28(3):766-771. doi: 10.1109/TNNLS.2015.2513001. Epub 2016 Jan 6.

Abstract

In this brief, we establish a novel complex-valued memristive recurrent neural network (CVMRNN) to study its stability. As a generalization of real-valued memristive neural networks, CVMRNN can be separated into real and imaginary parts. By means of M -matrix and Lyapunov function, the existence, uniqueness, and exponential stability of the equilibrium point for CVMRNNs are investigated, and sufficient conditions are presented. Finally, the effectiveness of obtained results is illustrated by two numerical examples.

摘要

在这份简介中,我们建立了一个新的复值忆阻递归神经网络 (CVMRNN) 来研究其稳定性。作为实值忆阻神经网络的推广,CVMRNN 可以分为实部和虚部。通过 M-矩阵和李雅普诺夫函数,研究了 CVMRNN 的平衡点的存在性、唯一性和指数稳定性,并给出了充分条件。最后,通过两个数值例子说明了所得结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验