Suppr超能文献

利用基于深度学习的分割和轮廓驱动的可变形配准技术实现腹部结构的剂量累积。

Leveraging deep learning-based segmentation and contours-driven deformable registration for dose accumulation in abdominal structures.

作者信息

McCulloch Molly M, Cazoulat Guillaume, Svensson Stina, Gryshkevych Sergii, Rigaud Bastien, Anderson Brian M, Kirimli Ezgi, De Brian, Mathew Ryan T, Zaid Mohamed, Elganainy Dalia, Peterson Christine B, Balter Peter, Koay Eugene J, Brock Kristy K

机构信息

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

RaySearch Laboratories, Stockholm, Sweden.

出版信息

Front Oncol. 2022 Nov 2;12:1015608. doi: 10.3389/fonc.2022.1015608. eCollection 2022.

Abstract

PURPOSE

Discrepancies between planned and delivered dose to GI structures during radiation therapy (RT) of liver cancer may hamper the prediction of treatment outcomes. The purpose of this study is to develop a streamlined workflow for dose accumulation in a treatment planning system (TPS) during liver image-guided RT and to assess its accuracy when using different deformable image registration (DIR) algorithms.

MATERIALS AND METHODS

Fifty-six patients with primary and metastatic liver cancer treated with external beam radiotherapy guided by daily CT-on-rails (CTOR) were retrospectively analyzed. The liver, stomach and duodenum contours were auto-segmented on all planning CTs and daily CTORs using deep-learning methods. Dose accumulation was performed for each patient using scripting functionalities of the TPS and considering three available DIR algorithms based on: (i) image intensities only; (ii) intensities + contours; (iii) a biomechanical model (contours only). Planned and accumulated doses were converted to equivalent dose in 2Gy (EQD2) and normal tissue complication probabilities (NTCP) were calculated for the stomach and duodenum. Dosimetric indexes for the normal liver, GTV, stomach and duodenum and the NTCP values were exported from the TPS for analysis of the discrepancies between planned and the different accumulated doses.

RESULTS

Deep learning segmentation of the stomach and duodenum enabled considerable acceleration of the dose accumulation process for the 56 patients. Differences between accumulated and planned doses were analyzed considering the 3 DIR methods. For the normal liver, stomach and duodenum, the distribution of the 56 differences in maximum doses (D2%) presented a significantly higher variance when a contour-driven DIR method was used instead of the intensity only-based method. Comparing the two contour-driven DIR methods, differences in accumulated minimum doses (D98%) in the GTV were >2Gy for 15 (27%) of the patients. Considering accumulated dose instead of planned dose in standard NTCP models of the duodenum demonstrated a high sensitivity of the duodenum toxicity risk to these dose discrepancies, whereas smaller variations were observed for the stomach.

CONCLUSION

This study demonstrated a successful implementation of an automatic workflow for dose accumulation during liver cancer RT in a commercial TPS. The use of contour-driven DIR methods led to larger discrepancies between planned and accumulated doses in comparison to using an intensity only based DIR method, suggesting a better capability of these approaches in estimating complex deformations of the GI organs.

摘要

目的

肝癌放射治疗(RT)期间胃肠道结构的计划剂量与实际 delivered 剂量之间的差异可能会妨碍对治疗结果的预测。本研究的目的是开发一种在肝脏图像引导 RT 期间治疗计划系统(TPS)中进行剂量累积的简化工作流程,并评估使用不同的可变形图像配准(DIR)算法时其准确性。

材料与方法

回顾性分析 56 例接受每日在线 CT(CTOR)引导的外照射放疗的原发性和转移性肝癌患者。使用深度学习方法在所有计划 CT 和每日 CTOR 上自动分割肝脏、胃和十二指肠轮廓。使用 TPS 的脚本功能并考虑基于以下三种可用 DIR 算法对每位患者进行剂量累积:(i)仅图像强度;(ii)强度 + 轮廓;(iii)生物力学模型(仅轮廓)。将计划剂量和累积剂量转换为 2Gy 等效剂量(EQD2),并计算胃和十二指肠的正常组织并发症概率(NTCP)。从 TPS 导出正常肝脏、GTV、胃和十二指肠的剂量学指标以及 NTCP 值,以分析计划剂量与不同累积剂量之间的差异。

结果

胃和十二指肠的深度学习分割使 56 例患者的剂量累积过程显著加速。考虑 3 种 DIR 方法分析累积剂量与计划剂量之间的差异。对于正常肝脏、胃和十二指肠,当使用基于轮廓的 DIR 方法而非仅基于强度的方法时,56 个最大剂量差异(D2%)的分布呈现出显著更高的方差。比较两种基于轮廓的 DIR 方法,15 例(27%)患者的 GTV 中累积最小剂量(D98%)差异 >2Gy。在十二指肠的标准 NTCP 模型中考虑累积剂量而非计划剂量表明,十二指肠毒性风险对这些剂量差异具有高度敏感性,但胃的变化较小。

结论

本研究证明了在商业 TPS 中成功实施肝癌 RT 期间剂量累积的自动工作流程。与仅使用基于强度的 DIR 方法相比,使用基于轮廓的 DIR 方法导致计划剂量与累积剂量之间的差异更大,这表明这些方法在估计胃肠道器官复杂变形方面具有更好的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a23/9666494/da10c9ddcdfb/fonc-12-1015608-g001.jpg

相似文献

2
Deformable image registration for composite planned doses during adaptive radiation therapy.
J Med Imaging Radiat Sci. 2024 Mar;55(1):82-90. doi: 10.1016/j.jmir.2023.12.009. Epub 2024 Jan 12.

引用本文的文献

1
Data Science Opportunities To Improve Radiotherapy Planning and Clinical Decision Making.
Semin Radiat Oncol. 2024 Oct;34(4):379-394. doi: 10.1016/j.semradonc.2024.07.012.
2
Artificial intelligence-based automated segmentation and radiotherapy dose mapping for thoracic normal tissues.
Phys Imaging Radiat Oncol. 2024 Feb 1;29:100542. doi: 10.1016/j.phro.2024.100542. eCollection 2024 Jan.

本文引用的文献

3
Automated Contouring of Contrast and Noncontrast Computed Tomography Liver Images With Fully Convolutional Networks.
Adv Radiat Oncol. 2020 May 16;6(1):100464. doi: 10.1016/j.adro.2020.04.023. eCollection 2021 Jan-Feb.
4
Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer.
Int J Radiat Oncol Biol Phys. 2021 Mar 15;109(4):1096-1110. doi: 10.1016/j.ijrobp.2020.10.038. Epub 2020 Nov 9.
5
Vasculature-Driven Biomechanical Deformable Image Registration of Longitudinal Liver Cholangiocarcinoma Computed Tomographic Scans.
Adv Radiat Oncol. 2019 Oct 17;5(2):269-278. doi: 10.1016/j.adro.2019.10.002. eCollection 2020 Mar-Apr.
6
U-Net: deep learning for cell counting, detection, and morphometry.
Nat Methods. 2019 Jan;16(1):67-70. doi: 10.1038/s41592-018-0261-2. Epub 2018 Dec 17.
7
A simulation study to assess the potential impact of developing normal tissue complication probability models with accumulated dose.
Adv Radiat Oncol. 2018 May 16;3(4):662-672. doi: 10.1016/j.adro.2018.05.003. eCollection 2018 Oct-Dec.
9
Implementing Radiation Dose-Volume Liver Response in Biomechanical Deformable Image Registration.
Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):1004-1012. doi: 10.1016/j.ijrobp.2017.06.2455. Epub 2017 Jun 27.
10
Feasibility of 4D perfusion CT imaging for the assessment of liver treatment response following SBRT and sorafenib.
Adv Radiat Oncol. 2016 Jul 1;1(3):194-203. doi: 10.1016/j.adro.2016.06.004. eCollection 2016 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验