Jiang Jue, Min Seo Choi Chloe, Deasy Joseph O, Rimner Andreas, Thor Maria, Veeraraghavan Harini
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
Phys Imaging Radiat Oncol. 2024 Feb 1;29:100542. doi: 10.1016/j.phro.2024.100542. eCollection 2024 Jan.
Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart.
AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA).
AIDA required ∼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (>=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6).
Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.
对胸部器官所接受的放射治疗(RT)进行客观评估需要快速且准确的可变形剂量映射。本研究的目的是实施并评估一种基于人工智能(AI)可变形图像配准(DIR)和器官分割的AI剂量映射(AIDA),并将其应用于食管和心脏。
在一个自动化流程中,对72例接受同步放化疗至60 Gy(每次2 Gy分割)的局部晚期非小细胞肺癌患者计算AIDA指标。该流程步骤为:(i)将计划CT自动进行刚性配准并裁剪至第1周和第2周锥形束CT(CBCT)的视野范围,(ii)对CBCT进行AI分割,以及(iii)基于AI-DIR的剂量映射以计算剂量指标。将AIDA剂量指标与计划剂量和手动轮廓剂量映射(手动DA)进行比较。
AIDA处理每名患者约需2分钟。生成的食管和心脏分割的平均骰子相似系数(DSC)分别为0.80±0.15和0.94±0.05,第95百分位数的豪斯多夫距离(HD95)分别为3.9±3.4毫米和14.1±8.3毫米。AIDA计算的心脏剂量显著低于计划心脏剂量(p = 0.04)。与手动DA(N = 6)相比,AIDA与计划剂量之间更频繁地观察到更大的剂量偏差(>=1 Gy)(N = 26)。
使用AIDA从CBCT快速估计胸部组织的放疗剂量是可行的。AIDA得出的指标和分割与手动DA相似,因此促使在放疗应用中使用AIDA。