Cazoulat Guillaume, Elganainy Dalia, Anderson Brian M, Zaid Mohamed, Park Peter C, Koay Eugene J, Brock Kristy K
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Adv Radiat Oncol. 2019 Oct 17;5(2):269-278. doi: 10.1016/j.adro.2019.10.002. eCollection 2020 Mar-Apr.
Deformable image registration (DIR) of longitudinal liver cancer computed tomographic (CT) images can be challenging owing to anatomic changes caused by radiation therapy (RT) or disease progression. We propose a workflow for the DIR of longitudinal contrast-enhanced CT scans of liver cancer based on a biomechanical model of the liver driven by boundary conditions on the liver surface and centerline of an autosegmentation of the vasculature.
Pre- and post-RT CT scans acquired with a median gap of 112 (32-217) days for 28 patients who underwent RT for intrahepatic cholangiocarcinoma were retrospectively analyzed. For each patient, 5 corresponding anatomic landmarks in pre- and post-RT scans were identified in the liver by a clinical expert for evaluation of the accuracy of different DIR strategies. The first strategy corresponded to the use of a biomechanical model-based DIR method with boundary conditions specified on the liver surface (BM_DIR). The second strategy corresponded to the use of an expansion of BM_DIR consisting of the auto-segmentation of the liver vasculature to determine additional boundary conditions in the biomechanical model (BM_DIR_VBC). The 2 strategies were also compared with an intensity-based DIR strategy using a Demons algorithms.
The group mean target registration errors were 12.4 ± 7.5, 7.7 ± 3.7 and 4.4 ± 2.5 mm, for the Demons, BM_DIR and BM_DIR_VBC, respectively.
In regard to the large and complex deformation observed in this study and the achieved accuracy of 4.4 mm, the proposed BM_DIR_VBC method might reveal itself as a valuable tool in future studies on the relationship between delivered dose and treatment outcome.
由于放射治疗(RT)或疾病进展导致的解剖结构变化,纵向肝癌计算机断层扫描(CT)图像的可变形图像配准(DIR)具有挑战性。我们基于肝脏表面和血管自动分割中心线的边界条件驱动的肝脏生物力学模型,提出了一种用于肝癌纵向增强CT扫描DIR的工作流程。
回顾性分析了28例接受肝内胆管癌RT治疗患者的RT前后CT扫描,中位间隔时间为112(32 - 217)天。对于每位患者,临床专家在肝脏的RT前后扫描中识别出5个相应的解剖标志,以评估不同DIR策略的准确性。第一种策略对应于使用基于生物力学模型的DIR方法,在肝脏表面指定边界条件(BM_DIR)。第二种策略对应于使用BM_DIR的扩展,包括肝脏血管的自动分割,以确定生物力学模型中的额外边界条件(BM_DIR_VBC)。这两种策略还与使用Demons算法的基于强度的DIR策略进行了比较。
对于Demons、BM_DIR和BM_DIR_VBC,组平均目标配准误差分别为12.4±7.5、7.7±3.7和4.4±2.5毫米。
鉴于本研究中观察到的大而复杂的变形以及实现的4.4毫米的精度,所提出的BM_DIR_VBC方法可能会在未来关于所给予剂量与治疗结果之间关系的研究中成为一种有价值的工具。