National Centre for Biological Sciences, Tata Institute of Fundamental Researchgrid.22401.35, Bangalore, Karnataka, India.
Institut Pasteurgrid.428999.7, Paris, France.
mSystems. 2022 Dec 20;7(6):e0090022. doi: 10.1128/msystems.00900-22. Epub 2022 Nov 21.
Attempts to understand gene regulation by global transcription factors have largely been limited to expression studies under binary conditions of presence and absence of the transcription factor. Studies addressing genome-wide transcriptional responses to changing transcription factor concentration at high resolution are lacking. Here, we create a data set containing the entire Escherichia coli transcriptome in Luria-Bertani (LB) broth as it responds to 10 different cAMP concentrations spanning the biological range. We use the Hill's model to accurately summarize individual gene responses into three intuitively understandable parameters, , , and , reflecting the sensitivity, nonlinearity, and midpoint of the dynamic range. Our data show that most cAMP-regulated genes have an of >2, with their values centered around the wild-type concentration of cAMP. Additionally, cAMP receptor protein (CRP) affinity to a promoter is correlated with but not , hinting that a high-affinity CRP promoter need not ensure transcriptional activation at lower cAMP concentrations and instead affects the magnitude of the response. Finally, genes belonging to different functional classes are tuned to have different , , and values. We demonstrate that phenomenological models are a better alternative for studying gene expression trends than classical clustering methods, with the phenomenological constants providing greater insights into how genes are tuned in a regulatory network. Different genes may follow different trends in response to various transcription factor concentrations. In this study, we ask two questions: (i) what are the trends that different genes follow in response to changing transcription factor concentrations and (ii) what methods can be used to extract information from the gene trends so obtained. We demonstrate a method to analyze transcription factor concentration-dependent genome-wide expression data using phenomenological models. Conventional clustering methods and principal-component analysis (PCA) can be used to summarize trends in data but have limited interpretability. The use of phenomenological models greatly enhances the interpretability and thus utility of conventional clustering. Transformation of dose-response data into phenomenological constants opens up avenues to ask and answer many different kinds of question. We show that the phenomenological constants obtained from the model fits can be used to generate insights about network topology and allows integration of other experimental data such as chromatin immunoprecipitation sequencing (ChIP-seq) to understand the system in greater detail.
试图通过全局转录因子来理解基因调控,在很大程度上仅限于存在和不存在转录因子的二元条件下的表达研究。缺乏研究在高分辨率下研究转录因子浓度变化时全基因组转录响应的相关报道。在这里,我们创建了一个数据集,其中包含了 Luria-Bertani (LB) 肉汤中整个大肠杆菌转录组的信息,以响应跨越生物范围的 10 种不同 cAMP 浓度。我们使用 Hill 模型将单个基因的响应准确地总结为三个直观易懂的参数、、和,反映了灵敏度、非线性和动态范围的中点。我们的数据表明,大多数 cAMP 调控的基因的>2,其值集中在 cAMP 的野生型浓度周围。此外,cAMP 受体蛋白 (CRP) 与启动子的亲和力与有关,但与无关,这表明高亲和力 CRP 启动子不一定确保在较低 cAMP 浓度下的转录激活,而是影响响应的幅度。最后,属于不同功能类别的基因被调谐为具有不同的、和值。我们证明,现象模型是研究基因表达趋势的更好选择,而不是经典的聚类方法,现象学常数提供了更多关于基因在调控网络中如何调谐的见解。不同的基因可能会根据不同的转录因子浓度遵循不同的趋势。在这项研究中,我们提出了两个问题:(i)不同的基因在响应转录因子浓度变化时遵循哪些趋势,(ii)可以使用什么方法从获得的基因趋势中提取信息。我们展示了一种使用现象模型分析转录因子浓度依赖性全基因组表达数据的方法。传统的聚类方法和主成分分析 (PCA) 可用于总结数据中的趋势,但解释能力有限。现象模型的使用极大地增强了传统聚类的可解释性和实用性。将剂量反应数据转换为现象学常数,为提出和回答许多不同类型的问题开辟了途径。我们表明,从模型拟合中获得的现象学常数可用于生成有关网络拓扑的见解,并允许整合其他实验数据,如染色质免疫沉淀测序 (ChIP-seq),以更详细地了解系统。