文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宏基因组下一代测序在新生儿感染性疾病诊断中的应用。

Metagenomic Next-Generation Sequencing for the Diagnosis of Neonatal Infectious Diseases.

机构信息

Xi'an Children's Hospital, Xi'an, China.

Neonatal Intensive Care Department, Xi'an Children's Hospital, Xi'an, China.

出版信息

Microbiol Spectr. 2022 Dec 21;10(6):e0119522. doi: 10.1128/spectrum.01195-22. Epub 2022 Nov 21.


DOI:10.1128/spectrum.01195-22
PMID:36409152
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9769891/
Abstract

Infectious diseases pose a fatal risk to neonates. Timely and accurate pathogen detection is crucial for proper clinical diagnosis and therapeutic strategies. Limited sample volumes from neonatal patients seriously hindered the accurate detection of pathogens. Here, we unravel that metagenomic next-generation sequencing (mNGS) of cell-free DNA (cfDNA) and RNA can achieve unbiased detection of trace pathogens from different kinds of body fluid samples and blood samples. We enrolled 168 neonatal patients with suspected infections from whom blood samples (= 153), cerebrospinal fluid samples (= 127), and respiratory tract samples (RTSs) (including bronchoalveolar lavage fluids, sputa, and respiratory secretions) (= 51) were collected and analyzed using mNGS. High rates of positivity (70.2%; 118/168) of mNGS were observed, and the coincidence rate against the final clinical diagnosis in positive mNGS cases reached 68.6% (81/118). The most common causative pathogens were Klebsiella pneumoniae (= 12), Escherichia coli (= 12), and Streptococcus pneumoniae (= 8). mNGS using cfDNA and RNA can identify microbes that cannot be detected by conventional methods in different body fluid and blood samples, and more than 50% of these microbes were identified as causative pathogens. Further local polynomial regression fitting analysis revealed that the best timing for mNGS detection ranged from 1 to 3 days after the start of continuous antimicrobial therapy. Diagnosed and guided by mNGS results, the therapeutic regimens for 86 out of 117 neonatal patients were changed, most of whom (80/86) completely recovered and were discharged, while 44 out of 86 patients completely or partially stopped unnecessary medication. Our findings highlight the importance of mNGS in detecting causative DNA and RNA pathogens in infected neonatal patients. To the best of our knowledge, this is the first report on evaluating the performance of mNGS using cfDNA and RNA from body fluid and blood samples for diagnosing neonatal infections. mNGS of RNA and cfDNA can achieve the unbiased detection and identification of trace pathogens from different kinds of neonatal body fluid and blood samples with a high total coincidence rate (226/331; 68.3%) against final clinical diagnoses by sample. The best timing for mNGS detection in neonatal infections ranged from 1 to 3 days, rather than 0 days, after the start of continuous antimicrobial therapy. Our findings highlight the importance of mNGS in detecting causative DNA and RNA pathogens, and the extensive application of mNGS for the diagnosis of neonatal infections can be expected.

摘要

传染病对新生儿构成致命风险。及时、准确地检测病原体对于正确的临床诊断和治疗策略至关重要。新生儿患者的样本量有限,严重阻碍了病原体的准确检测。在这里,我们揭示了游离 DNA(cfDNA)和 RNA 的宏基因组下一代测序(mNGS)可以从各种体液样本和血液样本中无偏地检测痕量病原体。我们招募了 168 名疑似感染的新生儿患者,采集了血样(=153)、脑脊液样本(=127)和呼吸道样本(RTS,包括支气管肺泡灌洗液、痰液和呼吸道分泌物)(=51),并使用 mNGS 进行了分析。mNGS 的阳性率(70.2%;118/168)较高,阳性 mNGS 病例与最终临床诊断的符合率达到 68.6%(81/118)。最常见的病原体是肺炎克雷伯菌(=12)、大肠埃希菌(=12)和肺炎链球菌(=8)。cfDNA 和 RNA 的 mNGS 可以识别传统方法无法检测到的不同体液和血液样本中的微生物,其中超过 50%的微生物被鉴定为病原体。进一步的局部多项式回归拟合分析表明,mNGS 检测的最佳时间范围是在连续抗菌治疗开始后 1 至 3 天。根据 mNGS 结果进行诊断和指导,对 117 名新生儿患者中的 86 名患者的治疗方案进行了改变,其中大多数(80/86)完全康复并出院,而 86 名患者中有 44 名完全或部分停止了不必要的药物治疗。我们的研究结果强调了 mNGS 在检测感染新生儿的致病性 DNA 和 RNA 病原体方面的重要性。据我们所知,这是首次报告使用来自体液和血液样本的 cfDNA 和 RNA 评估 mNGS 对新生儿感染的诊断性能。mNGS 的 RNA 和 cfDNA 可以实现对不同种类的新生儿体液和血液样本中痕量病原体的无偏检测和鉴定,与最终临床诊断的总符合率(226/331;68.3%)较高。mNGS 检测新生儿感染的最佳时间是在连续抗菌治疗开始后 1 至 3 天,而不是 0 天。我们的研究结果强调了 mNGS 在检测致病性 DNA 和 RNA 病原体方面的重要性,预计 mNGS 将广泛应用于新生儿感染的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/715e5f186c6c/spectrum.01195-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/bd381d6e1f03/spectrum.01195-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/7ea61358b68a/spectrum.01195-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/5a08fa22dbd8/spectrum.01195-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/715e5f186c6c/spectrum.01195-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/bd381d6e1f03/spectrum.01195-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/7ea61358b68a/spectrum.01195-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/5a08fa22dbd8/spectrum.01195-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d1/9769891/715e5f186c6c/spectrum.01195-22-f004.jpg

相似文献

[1]
Metagenomic Next-Generation Sequencing for the Diagnosis of Neonatal Infectious Diseases.

Microbiol Spectr. 2022-12-21

[2]
Diagnosis of Neurological Infections in Pediatric Patients from Cell-Free DNA Specimens by Using Metagenomic Next-Generation Sequencing.

Microbiol Spectr. 2023-2-14

[3]
Comparison of metagenomic next-generation sequencing using cell-free DNA and whole-cell DNA for the diagnoses of pulmonary infections.

Front Cell Infect Microbiol. 2022

[4]
Metagenomic next-generation sequencing of cell-free and whole-cell DNA in diagnosing central nervous system infections.

Front Cell Infect Microbiol. 2022

[5]
The diagnostic value of metagenomic next⁃generation sequencing in infectious diseases.

BMC Infect Dis. 2021-1-13

[6]
The diagnostic value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in critically ill patients with respiratory tract infections.

Microbiol Spectr. 2024-8-6

[7]
High specificity of metagenomic next-generation sequencing using protected bronchial brushing sample in diagnosing pneumonia in children.

Front Cell Infect Microbiol. 2023

[8]
Improving Suspected Pulmonary Infection Diagnosis by Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing: a Multicenter Retrospective Study.

Microbiol Spectr. 2022-8-31

[9]
Performance of Metagenomic Next-Generation Sequencing of Cell-Free DNA From Vitreous and Aqueous Humor for Diagnoses of Intraocular Infections.

J Infect Dis. 2024-1-12

[10]
Evaluation of Cell-Free DNA-Based Next-Generation Sequencing for Identifying Pathogens in Bacteremia Patients.

Pol J Microbiol. 2022-12-1

引用本文的文献

[1]
Neonatal microbiome dysbiosis decoded by mNGS: from mechanistic insights to precision interventions.

Front Cell Infect Microbiol. 2025-8-18

[2]
Validation of mNGS results using extensive lab and clinical data.

BMC Microbiol. 2025-3-28

[3]
Application of metagenomic next-generation sequencing in treatment guidance for deep neck space abscess.

BMC Microbiol. 2025-3-26

[4]
Molecular assays for the diagnosis of sepsis in neonates: a diagnostic test accuracy review.

Cochrane Database Syst Rev. 2025-3-19

[5]
Illuminating the Challenges and Diagnostic Utility of Plasma Microbial Cell-Free DNA Sequencing in Suspected Infective Endocarditis: A Retrospective Observational Cohort Study.

Open Forum Infect Dis. 2025-2-17

[6]
Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis.

Antibiotics (Basel). 2024-9-13

[7]
Microbial cell-free DNA-sequencing as an addition to conventional diagnostics in neonatal sepsis.

Pediatr Res. 2025-2

[8]
The effects of sequencing strategies on Metagenomic pathogen detection using bronchoalveolar lavage fluid samples.

Heliyon. 2024-6-22

[9]
Combination of metagenomic next-generation sequencing and conventional tests unraveled pathogen profiles in infected patients undergoing allogeneic hematopoietic stem cell transplantation in Jilin Province of China.

Front Cell Infect Microbiol. 2024

[10]
Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in cerebrospinal fluid in pediatric patients with central nervous system infection: a systematic review and meta-analysis.

BMC Infect Dis. 2024-1-18

本文引用的文献

[1]
Skin and soft tissue infections and bacteremia caused by Vibrio cincinnatiensis.

IDCases. 2022-7-8

[2]
Comparative Genomic Analysis of Provides Insights into Genetic Diversity, Evolutionary Dynamics, and Pathogenic Traits of the Species.

Int J Mol Sci. 2022-4-20

[3]
Predictors of Mortality in Neonatal Pneumonia: An INCLEN Childhood Pneumonia Study.

Indian Pediatr. 2021-11-15

[4]
Human papillomaviruses: diversity, infection and host interactions.

Nat Rev Microbiol. 2022-2

[5]
Clinical Profile of Neonates Admitted with Sepsis to Neonatal Intensive Care Unit of Jimma Medical Center, A Tertiary Hospital in Ethiopia.

Ethiop J Health Sci. 2021-5

[6]
Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies.

Nat Commun. 2021-7-21

[7]
Combining Metagenomic Sequencing With Whole Exome Sequencing to Optimize Clinical Strategies in Neonates With a Suspected Central Nervous System Infection.

Front Cell Infect Microbiol. 2021

[8]
Incidence and microbiological characteristics of neonatal late onset sepsis in a neonatal intensive care unit in Peru.

Int J Infect Dis. 2021-7

[9]
Application of Metagenomic Next-Generation Sequencing in the Diagnosis of Pulmonary Infectious Pathogens From Bronchoalveolar Lavage Samples.

Front Cell Infect Microbiol. 2021

[10]
Literature Review and an Italian Hospital Experience about Post-Natal CMV Infection Acquired by Breast-Feeding in Very Low and/or Extremely Low Birth Weight Infants.

Nutrients. 2021-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索