Suppr超能文献

光谱库在捕获代谢组学领域知识方面的关键作用。

The critical role that spectral libraries play in capturing the metabolomics community knowledge.

机构信息

Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

Metabolomics. 2022 Nov 19;18(12):94. doi: 10.1007/s11306-022-01947-y.

Abstract

BACKGROUND

Spectral library searching is currently the most common approach for compound annotation in untargeted metabolomics. Spectral libraries applicable to liquid chromatography mass spectrometry have grown in size over the past decade to include hundreds of thousands to millions of mass spectra and tens of thousands of compounds, forming an essential knowledge base for the interpretation of metabolomics experiments.

AIM OF REVIEW

We describe existing spectral library resources, highlight different strategies for compiling spectral libraries, and discuss quality considerations that should be taken into account when interpreting spectral library searching results. Finally, we describe how spectral libraries are empowering the next generation of machine learning tools in computational metabolomics, and discuss several opportunities for using increasingly accessible large spectral libraries.

KEY SCIENTIFIC CONCEPTS OF REVIEW

This review focuses on the current state of spectral libraries for untargeted LC-MS/MS based metabolomics. We show how the number of entries in publicly accessible spectral libraries has increased more than 60-fold in the past eight years to aid molecular interpretation and we discuss how the role of spectral libraries in untargeted metabolomics will evolve in the near future.

摘要

背景

目前,在非靶向代谢组学中,谱库检索是化合物注释最常用的方法。在过去十年中,适用于液相色谱-质谱联用的谱库规模不断扩大,包含数十万到数百万张质谱图和数万种化合物,为代谢组学实验的解释提供了必要的知识库。

综述目的

我们描述了现有的谱库资源,强调了编译谱库的不同策略,并讨论了解释谱库检索结果时应考虑的质量注意事项。最后,我们描述了谱库如何为计算代谢组学中的下一代机器学习工具提供支持,并讨论了利用越来越多的大型谱库的几个机会。

综述的关键科学概念

本综述重点介绍了目前用于非靶向 LC-MS/MS 代谢组学的谱库。我们展示了在过去八年中,公开可获取的谱库中的条目数量增加了 60 多倍,以帮助进行分子解释,并且讨论了谱库在非靶向代谢组学中的作用在不久的将来将如何演变。

相似文献

6
Public LC-Orbitrap Tandem Mass Spectral Library for Metabolite Identification.公共 LC-Orbitrap 串联质谱代谢物鉴定文库。
J Proteome Res. 2021 Apr 2;20(4):2089-2097. doi: 10.1021/acs.jproteome.0c00930. Epub 2021 Feb 2.
9
Constructing a Tandem Mass Spectral Library for Forensic Ricin Identification.构建用于法医蓖麻毒素鉴定的串联质谱文库。
J Proteome Res. 2019 Nov 1;18(11):3926-3935. doi: 10.1021/acs.jproteome.9b00377. Epub 2019 Oct 14.

引用本文的文献

本文引用的文献

3
Enhancing untargeted metabolomics using metadata-based source annotation.基于元数据的源注释增强非靶向代谢组学。
Nat Biotechnol. 2022 Dec;40(12):1774-1779. doi: 10.1038/s41587-022-01368-1. Epub 2022 Jul 7.
6
Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides.Prosit-TMT:深度学习助力 TMT 标记肽的鉴定。
Anal Chem. 2022 May 24;94(20):7181-7190. doi: 10.1021/acs.analchem.1c05435. Epub 2022 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验