Suppr超能文献

利用机器学习模型预测急性心肌梗死后的死亡。

Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction.

机构信息

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.

Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut.

出版信息

JAMA Cardiol. 2021 Jun 1;6(6):633-641. doi: 10.1001/jamacardio.2021.0122.

Abstract

IMPORTANCE

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.

OBJECTIVE

To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.

DESIGN, SETTING, AND PARTICIPANTS: This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.

MAIN OUTCOMES AND MEASURES

Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.

RESULTS

A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.

CONCLUSIONS AND RELEVANCE

In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.

摘要

重要性

急性心肌梗死(AMI)后不良结局的准确预测可以指导护理服务的分诊和共同决策,而新方法有望利用现有数据产生更多的见解。

目的

评估当代机器学习方法是否可以通过纳入更多变量并识别预测因子和结果之间的复杂关系来促进风险预测。

设计、地点和参与者:这项队列研究使用美国心脏病学会胸痛-MI 登记处(American College of Cardiology Chest Pain-MI Registry)确定了 2011 年 1 月 1 日至 2016 年 12 月 31 日之间的所有 AMI 住院治疗病例。数据分析于 2018 年 2 月 1 日至 2020 年 10 月 22 日进行。

主要结局和措施

基于患者合并症、病史、表现特征和初始实验室值,开发并验证了三种机器学习模型来预测住院死亡率。模型是基于极端梯度提升(extreme gradient descent boosting,XGBoost,一种可解释的模型)、神经网络和元分类器模型开发的。在验证样本中,将其准确性与使用逻辑回归模型开发的当前标准进行了比较。

结果

在研究期间,共确定了 755402 例患者(平均[标准差]年龄为 65[13]岁;495202[65.5%]为男性)。在独立验证中,与逻辑回归相比,2 种机器学习模型(梯度提升和元分类器,包括梯度提升和神经网络输入的组合)的判别能力略有提高(最佳性能的机器学习模型的 C 统计量为 0.90,逻辑回归为 0.89)。在 XGBoost(预测与观察事件的斜率,1.01;95%CI,0.99-1.04)和元分类器模型(预测与观察事件的斜率,1.01;95%CI,0.99-1.02)中发现了独立验证数据中的近乎完美校准,在风险谱上具有更精确的分类。XGBoost 模型重新分类了 121839 人中的 32393 人(27%),元分类器模型重新分类了 121839 人中的 30836 人(25%),这些人在逻辑回归中被认为处于中到高死亡风险,被认为是低风险,这与观察到的事件发生率更一致。

结论和相关性

在这项使用大型全国登记处的队列研究中,测试的机器学习模型均未显著提高 AMI 后住院死亡率的判别能力,限制了其临床实用性。然而,与逻辑回归相比,XGBoost 和元分类器模型,但不是神经网络,为高危个体提供了更高的风险分辨率。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验