New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016.
Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095.
J Neurosci. 2022 Oct 12;42(41):7707-7720. doi: 10.1523/JNEUROSCI.0921-22.2022. Epub 2022 Sep 8.
Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels ( ) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels ( ), providing a hyperpolarizing drive. The combined reduction in both and synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states. Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance ( ) and mixed cation conductance ( ), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.
催产素(OXT)和催产素受体(OXTR)介导的信号控制海马 CA2 锥体神经元的兴奋性、放电模式和可塑性,这对于大脑振荡和社交记忆的产生至关重要。尽管如此,OXTR 诱导的 CA2 神经元效应的离子机制仍不完全清楚。我们使用报告小鼠系的切片生理学和交错电流钳和电压钳实验,系统地鉴定了在雄性和雌性小鼠 CA2 锥体细胞(PYRs)中由 OXT 信号调节的离子通道,并探索了通道电导的变化如何支持改变的电活动。OXTR 的激活抑制由内向整流钾通道()介导的外向钾电流,从而有利于膜去极化。同时,OXT 信号也减弱了由超极化激活环核苷酸门控(HCN)通道()介导的内向电流,提供超极化驱动力。这两种电流()的协同减少共同提高了膜电阻,有利于树突整合,同时限制了膜电位从静息状态快速去极化。结果,在 OXTR 激活期间,CA2 PYRs 对突触输入的反应性大大提高。出乎意料的是,OXTR 信号也强烈增强了河豚毒素抗性(TTX-R)电压门控钠电流,该电流有助于将膜电位驱动到尖峰阈值,从而促进节律性放电。这种新型的 OXTR 刺激离子机制协同作用,为 OXT 诱导的爆发式放电提供支持,这是 CA2 PYRs 对海马信息处理的贡献和对大脑回路更广泛影响的关键步骤。我们的研究加深了我们对 OXT 促进社交记忆和一般神经肽控制认知状态的基础的理解。催产素(OXT)在生殖、育儿和社会及情绪行为中发挥关键作用,而 OXTR 信号的缺失可能导致神经精神障碍。我们鉴定了一组新的 OXTR 调节的离子通道,它们协同作用以重新调整海马 CA2 锥体神经元,增强对突触输入的反应性并塑造输出。OXTR 信号抑制钾电导()和混合阳离子电导(),对膜电位产生相反的影响,稳定膜电位,同时协同提高膜电阻和电紧张扩散。OXT 信号还促进了先前在海马体(HP)中未描述的河豚毒素抗性(TTX-R)Na 电流,在进一步去极化时被激活。这种 TTX-R 电流降低了尖峰阈值,并支持节律性去极化和爆发式放电,这是下游电路的强大驱动力。