Lizarraga Lucina E, Suter Glenn W, Lambert Jason C, Patlewicz Grace, Zhao Jay Q, Dean Jeffry L, Kaiser Phillip
Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA.
Office of Research and Development, Emeritus, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA.
Regul Toxicol Pharmacol. 2023 Jan;137:105293. doi: 10.1016/j.yrtph.2022.105293. Epub 2022 Nov 19.
The assessment of human health hazards posed by chemicals traditionally relies on toxicity studies in experimental animals. However, most chemicals currently in commerce do not meet the minimum data requirements for hazard identification and dose-response analysis in human health risk assessment. Previously, we introduced a read-across framework designed to address data gaps for screening-level assessment of chemicals with insufficient in vivo toxicity information (Wang et al., 2012). It relies on inference by analogy from suitably tested source analogues to a target chemical, based on structural, toxicokinetic, and toxicodynamic similarity. This approach has been used for dose-response assessment of data-poor chemicals relevant to the U.S. EPA's Superfund program. We present herein, case studies of the application of this framework, highlighting specific examples of the use of biological similarity for chemical grouping and quantitative read-across. Based on practical knowledge and technological advances in the fields of read-across and predictive toxicology, we propose a revised framework. It includes important considerations for problem formulation, systematic review, target chemical analysis, analogue identification, analogue evaluation, and incorporation of new approach methods. This work emphasizes the integration of systematic methods and alternative toxicity testing data and tools in chemical risk assessment to inform regulatory decision-making.
传统上,对化学品造成的人类健康危害的评估依赖于实验动物的毒性研究。然而,目前市面上的大多数化学品并不满足人类健康风险评估中危害识别和剂量反应分析的最低数据要求。此前,我们引入了一个类推框架,旨在解决体内毒性信息不足的化学品筛选级评估的数据缺口(Wang等人,2012年)。它基于结构、毒代动力学和毒效动力学的相似性,通过从经过适当测试的源类似物类推到目标化学品来进行推断。这种方法已用于与美国环境保护局超级基金计划相关的数据匮乏化学品的剂量反应评估。我们在此展示该框架应用的案例研究,突出使用生物学相似性进行化学品分组和定量类推的具体例子。基于类推和预测毒理学领域的实践知识和技术进步,我们提出了一个修订框架。它包括问题制定、系统综述、目标化学品分析、类似物识别、类似物评估以及纳入新方法的重要考虑因素。这项工作强调在化学风险评估中整合系统方法以及替代毒性测试数据和工具,以为监管决策提供信息。