Vrijenhoek Nanette G, Wehr Matthias M, Kunnen Steven J, Wijaya Lukas S, Callegaro Giulia, Moné Martijn J, Escher Sylvia E, Van de Water Bob
Leiden Academic Centre of Drug Research, Leiden University, The Netherlands.
ITEM, Fraunhofer Institute, Hannover, Germany.
ALTEX. 2022;39(2):207–220. doi: 10.14573/altex.2107261. Epub 2022 Jan 17.
Chemical read-across is commonly evaluated without specific knowledge of the biological mechanisms leading to observed adverse outcomes in vivo. Integrating data that indicate shared modes of action in humans will strengthen read-across cases. Here we studied transcriptomic responses of primary human hepatocytes (PHH) to a large panel of carboxylic acids to include detailed mode-of-action data as a proof-of-concept for read-across in risk assessment. In rodents, some carboxylic acids, including valproic acid (VPA), are known to cause hepatic steatosis, whereas others do not. We investigated transcriptomics responses of PHHs exposed for 24 h to 18 structurally different VPA analogues in a concentration range to determine biological similarity in relation to in vivo steatotic potential. Using a targeted high-throughput screening assay, we assessed the differential expression of ~3,000 genes covering relevant biological pathways. Differentially expressed gene analysis revealed differences in potency of carboxylic acids, and expression patterns were highly similar for structurally similar compounds. Strong clustering occurred for steatosis-positive versus steatosis-negative carboxylic acids. To quantitatively define biological read-across, we combined pathway analysis and weighted gene co-expression network analysis. Active carboxylic acids displayed high similarity in gene network modulation. Importantly, free fatty acid synthesis modulation and stress pathway responses are affected by active carboxylic acids, providing coherent mechanistic underpinning for our findings. Our work shows that transcriptomic analysis of cultured human hepatocytes can reinforce the prediction of liver injury outcome based on quantitative and mechanistic biological data and support its application in read-across.
化学物质的类推法通常在不了解导致体内观察到不良后果的生物学机制的情况下进行评估。整合表明人类具有共同作用模式的数据将加强类推法的案例。在此,我们研究了原代人肝细胞(PHH)对大量羧酸的转录组反应,以纳入详细的作用模式数据,作为风险评估中类推法的概念验证。在啮齿动物中,一些羧酸,包括丙戊酸(VPA),已知会导致肝脂肪变性,而其他羧酸则不会。我们研究了暴露于18种结构不同的VPA类似物24小时的PHH的转录组反应,这些类似物处于一定浓度范围内,以确定与体内脂肪变性潜力相关的生物学相似性。使用靶向高通量筛选测定法,我们评估了约3000个涵盖相关生物学途径的基因的差异表达。差异表达基因分析揭示了羧酸效力的差异,并且结构相似的化合物的表达模式高度相似。脂肪变性阳性与脂肪变性阴性羧酸出现了强烈的聚类。为了定量定义生物学类推法,我们结合了途径分析和加权基因共表达网络分析。活性羧酸在基因网络调节方面表现出高度相似性。重要的是,游离脂肪酸合成调节和应激途径反应受活性羧酸影响,为我们的发现提供了连贯的机制基础。我们的工作表明,对培养的人肝细胞进行转录组分析可以基于定量和机制生物学数据加强对肝损伤结果的预测,并支持其在类推法中的应用。