Department of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois60208, United States.
Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States.
ACS Synth Biol. 2022 Dec 16;11(12):4009-4017. doi: 10.1021/acssynbio.2c00366. Epub 2022 Nov 23.
Particulate methane monooxygenase (pMMO) is a multi-subunit membrane metalloenzyme used by methanotrophic bacteria to convert methane to methanol. A major hurdle to studying pMMO is the lack of a recombinant expression system, precluding investigation of individual residues by mutagenesis and hampering a complete understanding of its mechanism. Here, we developed an lysate-based cell-free protein synthesis (CFPS) system that can be used to express pMMO in vitro in the presence of nanodiscs. We used a SUMO fusion construct to generate the native PmoB subunit and showed that the SUMO protease (Ulp1) cleaves the protein in the reaction mixture. Using an affinity tag to isolate the complete pMMO complex, we demonstrated that the complex forms without the need for exogenous translocon machinery or chaperones, confirmed by negative stain electron microscopy. This work demonstrates the potential for using CFPS to express multi-subunit membrane-bound metalloenzymes directly into lipid bilayers.
颗粒态甲烷单加氧酶(pMMO)是一种多亚基膜金属酶,被甲烷营养菌用于将甲烷转化为甲醇。研究 pMMO 的主要障碍是缺乏重组表达系统,这使得通过突变来研究单个残基变得不可能,并阻碍了对其机制的全面理解。在这里,我们开发了一种基于裂解物的无细胞蛋白合成(CFPS)系统,该系统可在纳米盘的存在下在体外表达 pMMO。我们使用 SUMO 融合构建体来产生天然的 PmoB 亚基,并表明 SUMO 蛋白酶(Ulp1)在反应混合物中切割该蛋白。通过使用亲和标签来分离完整的 pMMO 复合物,我们证明了该复合物无需外源性转位器机械或伴侣蛋白即可形成,这通过负染电子显微镜得到了证实。这项工作表明了使用 CFPS 将多亚基膜结合金属酶直接表达到脂质双层中的潜力。