Biochemistry. 2020 Aug 18;59(32):2946-2961. doi: 10.1021/acs.biochem.0c00459. Epub 2020 Jul 30.
The metalloenzyme soluble methane monooxygenase (sMMO) consists of hydroxylase (sMMOH), regulatory (MMOB), and reductase components. When sMMOH forms a complex with MMOB, the rate constants are greatly increased for the sequential access of O, protons, and CH to an oxygen-bridged diferrous metal cluster located in the buried active site. Here, we report high-resolution X-ray crystal structures of the diferric and diferrous states of both sMMOH and the sMMOH:MMOB complex using the components from OB3b. These structures are analyzed for O access routes enhanced when the complex forms. Previously reported, lower-resolution structures of the sMMOH:MMOB complex from the sMMO of Bath revealed a series of cavities through sMMOH postulated to serve as the O conduit. This potential role is evaluated in greater detail using the current structures. Additionally, a search for other potential O conduits in the OB3b sMMOH:MMOB complex revealed a narrow molecular tunnel, termed the W308-tunnel. This tunnel is sized appropriately for O and traverses the sMMOH-MMOB interface before accessing the active site. The kinetics of reaction of O with the diferrous sMMOH:MMOB complex in solution show that use of the MMOB V41R variant decreases the rate constant for O binding >25000-fold without altering the component affinity. The location of Val41 near the entrance to the W308-tunnel is consistent with the tunnel serving as the primary route for the transfer of O into the active site. Accordingly, the crystal structures show that formation of the diferrous sMMOH:MMOB complex restricts access through the chain of cavities while opening the W308-tunnel.
金属酶可溶性甲烷单加氧酶 (sMMO) 由羟化酶 (sMMOH)、调节 (MMOB) 和还原酶组成。当 sMMOH 与 MMOB 形成复合物时,O、质子和 CH 依次进入位于埋藏活性位点的氧桥接二价铁簇的速率常数大大增加。在这里,我们使用来自 OB3b 的组件报告了 sMMOH 和 sMMOH:MMOB 复合物的二价铁和二价状态的高分辨率 X 射线晶体结构。这些结构用于分析复合物形成时增强的 O 进入途径。先前报道的来自 Bath 的 sMMO 的 sMMOH:MMOB 复合物的较低分辨率结构揭示了一系列通过 sMMOH 的空腔,推测这些空腔作为 O 导管。使用当前结构更详细地评估了这种潜在作用。此外,在 OB3b sMMOH:MMOB 复合物中搜索其他潜在的 O 导管时发现了一个狭窄的分子隧道,称为 W308 隧道。该隧道的尺寸适合 O,并在进入活性位点之前穿过 sMMOH-MMOB 界面。O 与溶液中二价 sMMOH:MMOB 复合物的反应动力学表明,使用 MMOB V41R 变体可使 O 结合的速率常数降低 >25000 倍,而不改变组件亲和力。Val41 位于 W308 隧道入口附近的位置与隧道作为 O 进入活性位点的主要途径一致。因此,晶体结构表明二价 sMMOH:MMOB 复合物的形成限制了通过一系列空腔的进入,同时打开了 W308 隧道。