Suppr超能文献

OB3b 可溶性甲烷单加氧酶羟化酶和调节亚基复合物的结构研究揭示了一个瞬态的底物隧道。

Structural Studies of the OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex Reveal a Transient Substrate Tunnel.

出版信息

Biochemistry. 2020 Aug 18;59(32):2946-2961. doi: 10.1021/acs.biochem.0c00459. Epub 2020 Jul 30.

Abstract

The metalloenzyme soluble methane monooxygenase (sMMO) consists of hydroxylase (sMMOH), regulatory (MMOB), and reductase components. When sMMOH forms a complex with MMOB, the rate constants are greatly increased for the sequential access of O, protons, and CH to an oxygen-bridged diferrous metal cluster located in the buried active site. Here, we report high-resolution X-ray crystal structures of the diferric and diferrous states of both sMMOH and the sMMOH:MMOB complex using the components from OB3b. These structures are analyzed for O access routes enhanced when the complex forms. Previously reported, lower-resolution structures of the sMMOH:MMOB complex from the sMMO of Bath revealed a series of cavities through sMMOH postulated to serve as the O conduit. This potential role is evaluated in greater detail using the current structures. Additionally, a search for other potential O conduits in the OB3b sMMOH:MMOB complex revealed a narrow molecular tunnel, termed the W308-tunnel. This tunnel is sized appropriately for O and traverses the sMMOH-MMOB interface before accessing the active site. The kinetics of reaction of O with the diferrous sMMOH:MMOB complex in solution show that use of the MMOB V41R variant decreases the rate constant for O binding >25000-fold without altering the component affinity. The location of Val41 near the entrance to the W308-tunnel is consistent with the tunnel serving as the primary route for the transfer of O into the active site. Accordingly, the crystal structures show that formation of the diferrous sMMOH:MMOB complex restricts access through the chain of cavities while opening the W308-tunnel.

摘要

金属酶可溶性甲烷单加氧酶 (sMMO) 由羟化酶 (sMMOH)、调节 (MMOB) 和还原酶组成。当 sMMOH 与 MMOB 形成复合物时,O、质子和 CH 依次进入位于埋藏活性位点的氧桥接二价铁簇的速率常数大大增加。在这里,我们使用来自 OB3b 的组件报告了 sMMOH 和 sMMOH:MMOB 复合物的二价铁和二价状态的高分辨率 X 射线晶体结构。这些结构用于分析复合物形成时增强的 O 进入途径。先前报道的来自 Bath 的 sMMO 的 sMMOH:MMOB 复合物的较低分辨率结构揭示了一系列通过 sMMOH 的空腔,推测这些空腔作为 O 导管。使用当前结构更详细地评估了这种潜在作用。此外,在 OB3b sMMOH:MMOB 复合物中搜索其他潜在的 O 导管时发现了一个狭窄的分子隧道,称为 W308 隧道。该隧道的尺寸适合 O,并在进入活性位点之前穿过 sMMOH-MMOB 界面。O 与溶液中二价 sMMOH:MMOB 复合物的反应动力学表明,使用 MMOB V41R 变体可使 O 结合的速率常数降低 >25000 倍,而不改变组件亲和力。Val41 位于 W308 隧道入口附近的位置与隧道作为 O 进入活性位点的主要途径一致。因此,晶体结构表明二价 sMMOH:MMOB 复合物的形成限制了通过一系列空腔的进入,同时打开了 W308 隧道。

相似文献

1
Structural Studies of the OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex Reveal a Transient Substrate Tunnel.
Biochemistry. 2020 Aug 18;59(32):2946-2961. doi: 10.1021/acs.biochem.0c00459. Epub 2020 Jul 30.
3
Soluble Methane Monooxygenase Component Interactions Monitored by F NMR.
Biochemistry. 2021 Jun 29;60(25):1995-2010. doi: 10.1021/acs.biochem.1c00293. Epub 2021 Jun 8.
8
Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
Biochemistry. 2006 Feb 14;45(6):1685-92. doi: 10.1021/bi051605g.
9
Methane monooxygenase hydroxylase and B component interactions.
Biochemistry. 2006 Mar 7;45(9):2913-26. doi: 10.1021/bi052256t.

引用本文的文献

1
Harnessing the potential of microbial methane utilization for chasing sustainability.
Curr Opin Biotechnol. 2025 Aug;94:103332. doi: 10.1016/j.copbio.2025.103332. Epub 2025 Jul 4.
2
Gas Tunnel Engineering of Prolyl Hydroxylase Reprograms Hypoxia Signaling in Cells.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409234. doi: 10.1002/anie.202409234. Epub 2024 Oct 21.
3
Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.
Chem Rev. 2024 Feb 14;124(3):1288-1320. doi: 10.1021/acs.chemrev.3c00727. Epub 2024 Feb 2.
4
Gas tunnel engineering of prolyl hydroxylase reprograms hypoxia signaling in cells.
bioRxiv. 2024 May 15:2023.08.07.552357. doi: 10.1101/2023.08.07.552357.
5
Cell-Free Protein Synthesis of Particulate Methane Monooxygenase into Nanodiscs.
ACS Synth Biol. 2022 Dec 16;11(12):4009-4017. doi: 10.1021/acssynbio.2c00366. Epub 2022 Nov 23.
6
Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes.
Subcell Biochem. 2022;99:109-153. doi: 10.1007/978-3-031-00793-4_4.
7
De novo metalloprotein design.
Nat Rev Chem. 2022 Jan;6(1):31-50. doi: 10.1038/s41570-021-00339-5. Epub 2021 Dec 6.
8
Tunnel Architectures in Enzyme Systems that Transport Gaseous Substrates.
ACS Omega. 2021 Dec 3;6(49):33274-33283. doi: 10.1021/acsomega.1c05430. eCollection 2021 Dec 14.
10
The Crystal Structure of Cysteamine Dioxygenase Reveals the Origin of the Large Substrate Scope of This Vital Mammalian Enzyme.
Biochemistry. 2021 Dec 7;60(48):3728-3737. doi: 10.1021/acs.biochem.1c00463. Epub 2021 Nov 11.

本文引用的文献

2
Beneath the surface: Evolution of methane activity in the bacterial multicomponent monooxygenases.
Mol Phylogenet Evol. 2019 Oct;139:106527. doi: 10.1016/j.ympev.2019.106527. Epub 2019 Jun 4.
3
Salicylate 5-Hydroxylase: Intermediates in Aromatic Hydroxylation by a Rieske Monooxygenase.
Biochemistry. 2019 Dec 31;58(52):5305-5319. doi: 10.1021/acs.biochem.9b00292. Epub 2019 May 15.
4
Soluble Methane Monooxygenase.
Annu Rev Biochem. 2019 Jun 20;88:409-431. doi: 10.1146/annurev-biochem-013118-111529. Epub 2019 Jan 11.
6
High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase.
J Am Chem Soc. 2017 Dec 13;139(49):18024-18033. doi: 10.1021/jacs.7b09560. Epub 2017 Dec 1.
7
Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD.
Biochemistry. 2017 Dec 12;56(49):6503-6514. doi: 10.1021/acs.biochem.7b00836. Epub 2017 Nov 22.
8
Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms.
Methods Enzymol. 2017;596:239-290. doi: 10.1016/bs.mie.2017.07.016. Epub 2017 Aug 24.
9
A tale of two methane monooxygenases.
J Biol Inorg Chem. 2017 Apr;22(2-3):307-319. doi: 10.1007/s00775-016-1419-y. Epub 2016 Nov 22.
10
Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase.
Biochemistry. 2015 Aug 4;54(30):4652-64. doi: 10.1021/acs.biochem.5b00573. Epub 2015 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验