Yan Jin, Beck Christian
Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
Entropy (Basel). 2022 Nov 17;24(11):1671. doi: 10.3390/e24111671.
Recent mathematical investigations have shown that under very general conditions, exponential mixing implies the Bernoulli property. As a concrete example of statistical mechanics that are exponentially mixing we consider the Bernoulli shift dynamics by Chebyshev maps of arbitrary order N≥2, which maximizes Tsallis q=3 entropy rather than the ordinary q=1 Boltzmann-Gibbs entropy. Such an information shift dynamics may be relevant in a pre-universe before ordinary space-time is created. We discuss symmetry properties of the coupled Chebyshev systems, which are different for even and odd . We show that the value of the fine structure constant αel=1/137 is distinguished as a coupling constant in this context, leading to uncorrelated behaviour in the spatial direction of the corresponding coupled map lattice for N=3.
最近的数学研究表明,在非常一般的条件下,指数混合意味着伯努利性质。作为指数混合的统计力学的一个具体例子,我们考虑任意阶数N≥2的切比雪夫映射的伯努利移位动力学,它使Tsallis q = 3熵最大化,而不是普通的q = 1玻尔兹曼 - 吉布斯熵。这种信息移位动力学可能在普通时空产生之前的前宇宙中具有相关性。我们讨论了耦合切比雪夫系统的对称性质,其对于偶数和奇数是不同的。我们表明,精细结构常数αel = 1/137的值在这种情况下作为耦合常数是独特的,导致对于N = 3的相应耦合映射晶格在空间方向上出现不相关行为。