Suppr超能文献

统计推断中的最大熵原理:非香农熵的情况。

Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies.

作者信息

Jizba Petr, Korbel Jan

机构信息

FNSPE, Czech Technical University in Prague, Břehová 7, 115 19, Prague, Czech Republic.

Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria.

出版信息

Phys Rev Lett. 2019 Mar 29;122(12):120601. doi: 10.1103/PhysRevLett.122.120601.

Abstract

In this Letter, we show that the Shore-Johnson axioms for the maximum entropy principle in statistical estimation theory account for a considerably wider class of entropic functional than previously thought. Apart from a formal side of the proof where a one-parameter class of admissible entropies is identified, we substantiate our point by analyzing the effect of weak correlations and by discussing two pertinent examples: two-qubit quantum system and transverse-momentum behavior of hadrons in high-energy proton-proton collisions.

摘要

在本信函中,我们表明,统计估计理论中最大熵原理的肖尔 - 约翰逊公理涵盖的熵泛函类别比之前认为的要广泛得多。除了在证明的形式方面确定了一类单参数的可允许熵之外,我们还通过分析弱相关性的影响以及讨论两个相关示例来证实我们的观点:双量子比特量子系统和高能质子 - 质子碰撞中强子的横向动量行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验