EditForce, Inc., Fukuoka 819-0395, Japan.
Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
Cells. 2022 Nov 8;11(22):3529. doi: 10.3390/cells11223529.
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
RNAs 在基因表达中发挥着许多重要作用,并参与各种人类疾病。尽管已经建立了基因组编辑技术,但与基于核苷酸的 RNA 操作技术(如 siRNA 和 RNA 靶向 CRISPR/Cas)相比,能够操纵特定细胞 RNA 分子的序列特异性 RNA 结合蛋白的工程技术尚不成熟。在这里,我们展示了一种使用五肽重复(PPR)-基序蛋白的多功能 RNA 操作技术。首先,我们开发了一种基于 PPR 的设计序列特异性 RNA 结合蛋白的快速构建和评估方法。该系统能够稳定构建数十种针对长 18nt RNA 的功能设计的 PPR 蛋白,这些蛋白靶向哺乳动物转录组中的单个特定 RNA。此外,通过控制报告基因或内源性 mRNA 的选择性剪接,首次证明了设计的 PPR 蛋白的细胞功能。我们的结果提出了一种使用 PPR 蛋白的多功能基于蛋白质的 RNA 操作技术,有助于理解未知 RNA 的功能和创建基因电路,并有可能用于未来的治疗。