Suppr超能文献

线虫趋触性的最小神经回路的进化与分析。

Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.

机构信息

Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA.

出版信息

J Neurosci. 2010 Sep 29;30(39):12908-17. doi: 10.1523/JNEUROSCI.2606-10.2010.

Abstract

Chemotaxis during sinusoidal locomotion in nematodes captures in simplified form the general problem of how dynamical interactions between the nervous system, body, and environment are exploited in the generation of adaptive behavior. We used an evolutionary algorithm to generate neural networks that exhibit klinotaxis, a common form of chemotaxis in which the direction of locomotion in a chemical gradient closely follows the line of steepest ascent. Sensory inputs and motor outputs of the model networks were constrained to match the inputs and outputs of the Caenorhabditis elegans klinotaxis network. We found that a minimalistic neural network, comprised of an ON-OFF pair of chemosensory neurons and a pair of neck muscle motor neurons, is sufficient to generate realistic klinotaxis behavior. Importantly, emergent properties of model networks reproduced two key experimental observations that they were not designed to fit, suggesting that the model may be operating according to principles similar to those of the biological network. A dynamical systems analysis of 77 evolved networks revealed a novel neural mechanism for spatial orientation behavior. This mechanism provides a testable hypothesis that is likely to accelerate the discovery and analysis of the biological circuitry for chemotaxis in C. elegans.

摘要

线虫正弦运动中的趋化性以简化的形式捕捉到了一个普遍的问题,即神经系统、身体和环境之间的动力学相互作用如何被利用来产生适应性行为。我们使用进化算法生成了表现出趋化性的神经网络,趋化性是一种常见的趋化形式,其中在化学梯度中的运动方向紧密跟随最陡上升线。模型网络的感觉输入和运动输出受到限制,以匹配秀丽隐杆线虫趋化性网络的输入和输出。我们发现,由一对 ON-OFF 化学感觉神经元和一对颈部肌肉运动神经元组成的极简神经网络足以产生逼真的趋化性行为。重要的是,模型网络的涌现特性再现了两个关键的实验观察结果,而这些观察结果并不是为了拟合,这表明该模型可能是根据类似于生物网络的原理运行的。对 77 个进化网络的动力学系统分析揭示了一种用于空间定向行为的新型神经机制。该机制提供了一个可测试的假设,这很可能加速对秀丽隐杆线虫趋化性的生物电路的发现和分析。

相似文献

1
Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.
J Neurosci. 2010 Sep 29;30(39):12908-17. doi: 10.1523/JNEUROSCI.2606-10.2010.
2
Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
J Neurosci. 2014 Nov 19;34(47):15631-7. doi: 10.1523/JNEUROSCI.1757-14.2014.
4
Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.
PLoS Comput Biol. 2013;9(2):e1002890. doi: 10.1371/journal.pcbi.1002890. Epub 2013 Feb 7.
5
Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by .
Sensors (Basel). 2022 Nov 15;22(22):8825. doi: 10.3390/s22228825.
6
Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
J Neurosci. 2009 Apr 29;29(17):5370-80. doi: 10.1523/JNEUROSCI.3633-08.2009.
7
8
A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans.
J Comput Neurosci. 2004 Sep-Oct;17(2):137-47. doi: 10.1023/B:JCNS.0000037679.42570.d5.
9
Information Flow through a Model of the C. elegans Klinotaxis Circuit.
PLoS One. 2015 Oct 14;10(10):e0140397. doi: 10.1371/journal.pone.0140397. eCollection 2015.

引用本文的文献

2
C. elegans foraging as a model for understanding the neuronal basis of decision-making.
Cell Mol Life Sci. 2024 Jun 8;81(1):252. doi: 10.1007/s00018-024-05223-1.
3
A multiscale sensorimotor model of experience-dependent behavior in a minimal organism.
Biophys J. 2024 Jun 18;123(12):1654-1667. doi: 10.1016/j.bpj.2024.05.008. Epub 2024 May 29.
4
Neuronal sensorimotor integration guiding salt concentration navigation in .
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2310735121. doi: 10.1073/pnas.2310735121. Epub 2024 Jan 22.
5
Sleep is required to consolidate odor memory and remodel olfactory synapses.
Cell. 2023 Jun 22;186(13):2911-2928.e20. doi: 10.1016/j.cell.2023.05.006. Epub 2023 Jun 2.
6
Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by .
Sensors (Basel). 2022 Nov 15;22(22):8825. doi: 10.3390/s22228825.
7
Codimension-2 parameter space structure of continuous-time recurrent neural networks.
Biol Cybern. 2022 Aug;116(4):501-515. doi: 10.1007/s00422-022-00938-5. Epub 2022 Jun 20.
8
Oscillators and servomechanisms in orientation and navigation, and sometimes in cognition.
Proc Biol Sci. 2022 May 11;289(1974):20220237. doi: 10.1098/rspb.2022.0237.
9
Reinforcement Learning for Central Pattern Generation in Dynamical Recurrent Neural Networks.
Front Comput Neurosci. 2022 Apr 8;16:818985. doi: 10.3389/fncom.2022.818985. eCollection 2022.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
2
3
Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
J Neurosci. 2009 Apr 29;29(17):5370-80. doi: 10.1523/JNEUROSCI.3633-08.2009.
4
The quest for action potentials in C. elegans neurons hits a plateau.
Nat Neurosci. 2009 Apr;12(4):377-8. doi: 10.1038/nn0409-377.
6
Optogenetic analysis of synaptic function.
Nat Methods. 2008 Oct;5(10):895-902. doi: 10.1038/nmeth.1252. Epub 2008 Sep 14.
8
Action potentials contribute to neuronal signaling in C. elegans.
Nat Neurosci. 2008 Aug;11(8):865-7. doi: 10.1038/nn.2131. Epub 2008 Jun 29.
9
Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans.
Nature. 2007 Nov 1;450(7166):63-70. doi: 10.1038/nature06292.
10
Circuit motifs for spatial orientation behaviors identified by neural network optimization.
J Neurophysiol. 2007 Aug;98(2):888-97. doi: 10.1152/jn.00074.2007. Epub 2007 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验