Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA.
J Neurosci. 2010 Sep 29;30(39):12908-17. doi: 10.1523/JNEUROSCI.2606-10.2010.
Chemotaxis during sinusoidal locomotion in nematodes captures in simplified form the general problem of how dynamical interactions between the nervous system, body, and environment are exploited in the generation of adaptive behavior. We used an evolutionary algorithm to generate neural networks that exhibit klinotaxis, a common form of chemotaxis in which the direction of locomotion in a chemical gradient closely follows the line of steepest ascent. Sensory inputs and motor outputs of the model networks were constrained to match the inputs and outputs of the Caenorhabditis elegans klinotaxis network. We found that a minimalistic neural network, comprised of an ON-OFF pair of chemosensory neurons and a pair of neck muscle motor neurons, is sufficient to generate realistic klinotaxis behavior. Importantly, emergent properties of model networks reproduced two key experimental observations that they were not designed to fit, suggesting that the model may be operating according to principles similar to those of the biological network. A dynamical systems analysis of 77 evolved networks revealed a novel neural mechanism for spatial orientation behavior. This mechanism provides a testable hypothesis that is likely to accelerate the discovery and analysis of the biological circuitry for chemotaxis in C. elegans.
线虫正弦运动中的趋化性以简化的形式捕捉到了一个普遍的问题,即神经系统、身体和环境之间的动力学相互作用如何被利用来产生适应性行为。我们使用进化算法生成了表现出趋化性的神经网络,趋化性是一种常见的趋化形式,其中在化学梯度中的运动方向紧密跟随最陡上升线。模型网络的感觉输入和运动输出受到限制,以匹配秀丽隐杆线虫趋化性网络的输入和输出。我们发现,由一对 ON-OFF 化学感觉神经元和一对颈部肌肉运动神经元组成的极简神经网络足以产生逼真的趋化性行为。重要的是,模型网络的涌现特性再现了两个关键的实验观察结果,而这些观察结果并不是为了拟合,这表明该模型可能是根据类似于生物网络的原理运行的。对 77 个进化网络的动力学系统分析揭示了一种用于空间定向行为的新型神经机制。该机制提供了一个可测试的假设,这很可能加速对秀丽隐杆线虫趋化性的生物电路的发现和分析。