Suppr超能文献

AutoDeconJ:一个 GPU 加速的 ImageJ 插件,用于 3D 光场去卷积,具有预测最佳迭代次数的功能。

AutoDeconJ: a GPU-accelerated ImageJ plugin for 3D light-field deconvolution with optimal iteration numbers predicting.

机构信息

School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China.

National Engineering Laboratory for Video Technology (NELVT), Peking University, Beijing 100871, China.

出版信息

Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac760.

Abstract

MOTIVATION

Light-field microscopy (LFM) is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicable for all system parameters. Here, we develop AutoDeconJ, a GPU-accelerated ImageJ plugin for 4.4× faster and more accurate deconvolution of LFM data. We further propose an image quality metric for the deconvolution process, aiding in automatically determining the optimal number of iterations with higher reconstruction accuracy and fewer artifacts.

RESULTS

Our proposed method outperforms state-of-the-art light-field deconvolution methods in reconstruction time and optimal iteration numbers prediction capability. It shows better universality of different light-field point spread function (PSF) parameters than the deep learning method. The fast, accurate and general reconstruction performance for different PSF parameters suggests its potential for mass 3D reconstruction of LFM data.

AVAILABILITY AND IMPLEMENTATION

The codes, the documentation and example data are available on an open source at: https://github.com/Onetism/AutoDeconJ.git.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

光场显微镜 (LFM) 是高速 3D 荧光成像的一种紧凑解决方案。通常,我们需要对捕获的原始数据进行 3D 反卷积。虽然有可以加速重建过程的深度神经网络方法,但该模型不适用于所有系统参数。在这里,我们开发了 AutoDeconJ,这是一个 GPU 加速的 ImageJ 插件,可将 LFM 数据的反卷积速度提高 4.4 倍,且更准确。我们进一步提出了一种用于反卷积过程的图像质量度量标准,有助于自动确定具有更高重建准确性和更少伪影的最佳迭代次数。

结果

与最先进的光场反卷积方法相比,我们提出的方法在重建时间和最佳迭代次数预测能力方面表现出色。与深度学习方法相比,它对不同光场点扩散函数 (PSF) 参数具有更好的通用性。针对不同 PSF 参数的快速、准确和通用的重建性能表明,它有可能大规模重建 LFM 数据。

可用性和实现

代码、文档和示例数据可在以下开源网站上获得:https://github.com/Onetism/AutoDeconJ.git。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c5b/9805591/eb5cc7a15ac5/btac760f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验