Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
EMBL Hamburg, c/o DESY, Hamburg, Germany.
Mol Psychiatry. 2024 Jun;29(6):1683-1697. doi: 10.1038/s41380-022-01882-3. Epub 2022 Nov 30.
Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.
突触后支架蛋白,如 Shank、PSD-95、 Homer 和 SAPAP/GKAP 家族成员,通过分子相互作用的密集网络,建立谷氨酸能突触的突触后密度。SHANK 基因的突变与神经发育障碍有关,包括自闭症和智力残疾。然而,还没有描述过干扰 Shank 蛋白关键功能的 SHANK 错义突变,这些功能被认为对突触形成至关重要,例如通过 PDZ 结构域与 GKAP 结合,或 Zn 依赖性 SAM 结构域的多聚化。我们鉴定了两名患有神经发育障碍的个体,他们携带 SHANK2 中的新生错义突变。p.G643R 变体扭曲了 Shank2 PDZ 结构域中 GKAP 的结合口袋,并阻止了与 GKAP 经典 PDZ 配体基序中 Thr(-2)的相互作用。p.L1800W 变体严重延迟了 Shank2-SAM 结构域 Zn 依赖性聚合的动力学。结构分析表明,Trp1800 取代了一个对 Zn 结合至关重要的组氨酸。由此产生的构象变化阻止了 SAM 结构域的螺旋聚合物通过并排接触堆积成薄片,这是 Shank 蛋白的一个标志,从而破坏了 Zn 诱导的高度协同组装过程。这两种变体都减少了 Shank2 在原代培养神经元中的突触后靶向,并改变了谷氨酸能突触传递。超分辨率显微镜显示,这两种突变体都干扰了突触后纳米簇的形成。我们的数据表明,Shank2 的 PDZ 和 SAM 介导的相互作用都有助于将突触后蛋白复合物压缩成纳米簇,而这个过程的缺陷会干扰人类的正常大脑发育。