Suppr超能文献

一种用于癫痫儿童自动癫痫发作检测的深度学习方法。

A Deep Learning Approach for Automatic Seizure Detection in Children With Epilepsy.

作者信息

Abdelhameed Ahmed, Bayoumi Magdy

机构信息

Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, United States.

出版信息

Front Comput Neurosci. 2021 Apr 8;15:650050. doi: 10.3389/fncom.2021.650050. eCollection 2021.

Abstract

Over the last few decades, electroencephalogram (EEG) has become one of the most vital tools used by physicians to diagnose several neurological disorders of the human brain and, in particular, to detect seizures. Because of its peculiar nature, the consequent impact of epileptic seizures on the quality of life of patients made the precise diagnosis of epilepsy extremely essential. Therefore, this article proposes a novel deep-learning approach for detecting seizures in pediatric patients based on the classification of raw multichannel EEG signal recordings that are minimally pre-processed. The new approach takes advantage of the automatic feature learning capabilities of a two-dimensional deep convolution autoencoder (2D-DCAE) linked to a neural network-based classifier to form a unified system that is trained in a supervised way to achieve the best classification accuracy between the ictal and interictal brain state signals. For testing and evaluating our approach, two models were designed and assessed using three different EEG data segment lengths and a 10-fold cross-validation scheme. Based on five evaluation metrics, the best performing model was a supervised deep convolutional autoencoder (SDCAE) model that uses a bidirectional long short-term memory (Bi-LSTM) - based classifier, and EEG segment length of 4 s. Using the public dataset collected from the Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), this model has obtained 98.79 ± 0.53% accuracy, 98.72 ± 0.77% sensitivity, 98.86 ± 0.53% specificity, 98.86 ± 0.53% precision, and an F1-score of 98.79 ± 0.53%, respectively. Based on these results, our new approach was able to present one of the most effective seizure detection methods compared to other existing state-of-the-art methods applied to the same dataset.

摘要

在过去几十年中,脑电图(EEG)已成为医生诊断人类大脑多种神经系统疾病,尤其是检测癫痫发作的最重要工具之一。由于其特殊性质,癫痫发作对患者生活质量产生的影响使得癫痫的精确诊断极为重要。因此,本文提出了一种基于对经过最少预处理的原始多通道EEG信号记录进行分类的新型深度学习方法,用于检测儿科患者的癫痫发作。新方法利用与基于神经网络的分类器相连的二维深度卷积自动编码器(2D - DCAE)的自动特征学习能力,形成一个以监督方式训练的统一系统,以在发作期和发作间期脑状态信号之间实现最佳分类准确率。为了测试和评估我们的方法,设计并评估了两个模型,使用了三种不同的EEG数据段长度和10折交叉验证方案。基于五个评估指标,表现最佳的模型是使用基于双向长短期记忆(Bi - LSTM)的分类器且EEG段长度为4秒的监督深度卷积自动编码器(SDCAE)模型。使用从波士顿儿童医院(CHB)和麻省理工学院(MIT)收集的公共数据集,该模型分别获得了98.79±0.53%的准确率、98.72±0.77%的灵敏度、98.86±0.53%的特异性、98.86±0.53%的精确率以及98.79±0.53%的F1分数。基于这些结果,与应用于同一数据集的其他现有最先进方法相比,我们的新方法能够呈现出最有效的癫痫发作检测方法之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/082e/8060463/0b6b84e2d6af/fncom-15-650050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验