Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore.
J Biomed Opt. 2022 Jun;27(6):066005. doi: 10.1117/1.JBO.27.6.066005. Epub 2022 Jun 20.
In circular scanning photoacoustic tomography (PAT), it takes several minutes to generate an image of acceptable quality, especially with a single-element ultrasound transducer (UST). The imaging speed can be enhanced by faster scanning (with high repetition rate light sources) and using multiple-USTs. However, artifacts arising from the sparse signal acquisition and low signal-to-noise ratio at higher scanning speeds limit the imaging speed. Thus, there is a need to improve the imaging speed of the PAT systems without hampering the quality of the PAT image.
To improve the frame rate (or imaging speed) of the PAT system by using deep learning (DL).
For improving the frame rate (or imaging speed) of the PAT system, we propose a novel U-Net-based DL framework to reconstruct PAT images from fast scanning data.
The efficiency of the network was evaluated on both single- and multiple-UST-based PAT systems. Both phantom and imaging demonstrate that the network can improve the imaging frame rate by approximately sixfold in single-UST-based PAT systems and by approximately twofold in multi-UST-based PAT systems.
We proposed an innovative method to improve the frame rate (or imaging speed) by using DL and with this method, the fastest frame rate of imaging is achieved without hampering the quality of the reconstructed image.
在环形扫描光声断层摄影术(PAT)中,生成具有可接受质量的图像需要几分钟的时间,尤其是使用单个超声换能器(UST)时。通过更快的扫描(使用高重复率光源)和使用多个 UST 可以提高成像速度。然而,由于稀疏信号采集和较高扫描速度下的低信噪比,会产生伪影,从而限制了成像速度。因此,需要在不影响 PAT 图像质量的前提下,提高 PAT 系统的成像速度。
通过深度学习(DL)提高 PAT 系统的帧率(或成像速度)。
为了提高 PAT 系统的帧率(或成像速度),我们提出了一种基于 U-Net 的新型 DL 框架,从快速扫描数据中重建 PAT 图像。
在基于单和多 UST 的 PAT 系统上评估了网络的效率。无论是在体模还是在实际成像中,都证明该网络可以将基于单 UST 的 PAT 系统中的成像帧率提高约 6 倍,将基于多 UST 的 PAT 系统中的成像帧率提高约 2 倍。
我们提出了一种通过使用 DL 提高帧率(或成像速度)的创新方法,使用这种方法,在不影响重建图像质量的情况下,实现了最快的成像帧率。